Thromb Haemost 1991; 65(01): 087-095
DOI: 10.1055/s-0038-1647460
Original Article
Schattauer GmbH Stuttgart

Blood Flow Stasis Induced by cw-Nd: YAG Laser Irradiation: Comparative Morphology of Mesenteric and Choroidal Vessels in Pigmented Rabbits

E van der Zypen
*   The Institute of Anatomy, University of Bern, Inselspital, Bern, Switzerland
,
C England
*   The Institute of Anatomy, University of Bern, Inselspital, Bern, Switzerland
,
F Fankhauser
**   The University Eye Clinic, Inselspital, Bern, Switzerland
,
S Kwasniewska
**   The University Eye Clinic, Inselspital, Bern, Switzerland
› Author Affiliations
Further Information

Publication History

Received 27 April 1990

Accepted after revision 14 August 1990

Publication Date:
02 July 2018 (online)

Summary

cw-Nd: YAG laser radiation was effective in producing blood flow stasis within arteries (35 – 40 μm in diameter) of pigmented rabbit mesentery (beam spot size: 80 μm; fluence :2 × 104 J cm−2) and choroid (beam spot size : 200 μm; fluence: 6 × 102 J cm−2) However, the mechanism by which this was achieved differed in each case, and depended upon the energy absorbing structures present in the irradiated tissue. In non-pigmented tissue, such as the mesentaty, haemoglobin represents the primary absorption centre, and the temperature attained within the vessel lumen (as inferred from morphological changes) is sufficient to denature plasma proteins, in particular fibrinogen, which consequently occlude the vessel lumen and arrest bleeding. In pigmented tissue, such as the choroid, melanocyte granules represent the primary absorption centre, which is thus shifted from the vessel lumen to the stroma. The temperature rise achieved within the vessel lumen is consequently loweq as evidenced by the absence of plasma protein denaturation. Blood flow stasis nonetheless occurs, but is triggered according to the normal haemostatic mechanism.

 
  • References

  • 1 Boergen K-P, Birngruber R, Hillenkamp F. Laser-induced endovascu-lar thrombosis as a possibility of selective vessel closure. Ophthalmic Res 1981; 13: 139-150
  • 2 Boergen K-P, Birngruber R, Gabel V-P, Hillenkamp F. Tierex-perimentelle Untersuchungen iiber die Wirkung von Laserlicht auf isolierte Gefasse. Ein Beitrag zur selektiven GefaBkoagulation. GSF-Bericht Ko 125 Mänchen-Neuherberg: 1977: 1-164
  • 3 Brandi H. Über die Bedeutung der Hämoglobin-Absorption fur die selektive Gefäßkoagulation. Tierexperimentelle Untersuchungen mit dem Neodym-YAG-Laser. Inaugural-Dissertation der Ludwig-Maxi-milians-Universität Miinchen; 1981: 1-75
  • 4 Boulnois JL. Photophysical processes in recent medical laser developments: A review. Lasers Med Sci 1985; 1: 47-66
  • 5 Arfors K-E, Bergqvist D, McKenzie FN, Nilsson G. Platelet response to laser-induced microvascular injury in the rabbit mesentery and the rabbit ear chamber. A statistical comparison. Thromb Res 1973; 3: 75-85
  • 6 Weichert W, Pauliks V, Breddin HK. Laser-induced thrombi in rat mesenteric vessels and antithrombotic drugs. Haemostasis 1983; 13: 61-71
  • 7 Gorisch W, Boergen K-P. Laser related heat effects on blood vessels. In: Lasers in Biology and Medicine Hillenkamp F, Pratesi R, Sacchi CA. (eds). Plenum Press; New York-London: 1979: 99-109
  • 8 Lorenz B. Quantifizierung von laserinduzierten Aderhauteffekten in Abhängigkeit von der Wellenlänge und unter besonderer Berück-sichtigung der Aderhautgeometrie. Tierexperimentelle Untersuchun-gen - Theoretische Überlegungen - Klinische Konsequenzen Habilitationsschrift der Ludwig-Maximilians-Universiät München; 1988: 1-204
  • 9 Marshall J, Fankhauser F. The effect of light radiation on blood vessels and membranes. Trans Ophthalmol Soc UK 1972; XCII 469-478
  • 10 Furlan M. Die von Willebrandsche Krankheit. Schweiz Med Wochenschr 1987; 117: 1798-1806
  • 11 Houdijk WP M, Sakariassen KS, Nievelstein PF E M, Sixma JJ. Role of factor VUI-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar collagen types I and III. J Clin Invest 1985; 75: 531-540
  • 12 Zucker MB, Nachmias VT. Platelet activation. Arteriosclerosis 1985; 5: 2-18
  • 13 Gonias SL, Pizzo SV. The biochemistry of haemostasis. Clin Lab Haematol 1986; 8: 281-305
  • 14 Gabel V-P, Bimgruber R, Hillenkamp F. Visible and near infrared light absorption in pigment epithelium and choroid. In: International Congress Series No 450, XXIII Concilium Ophthalmologicum Shimizu K. (ed). Excerpta Medica Elsevier; Amsterdam-Oxford: 1978: 658-662
  • 15 Birngruber R, Lorenz B, Gabel V-P. Retinale Temperatur-stabilisierung aufgrund der Aderhautdurchblutung. Fortschr Ophthalmol 1987; 84: 92-95
  • 16 Mainster MA. Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology 1986; 93: 952-958
  • 17 Bebie H, Fankhauser F, Lotmar W, Roulier A. Theoretical estimate of the temperature within irradiated retinal vessels. Acta Ophthalmol (Copenh) 1974; 52: 13-36
  • 18 Fankhauser F, Kwasniewska S, van der Zypen E. Basic mechanisms underlying laser thrombogenesis in vascular structures of the eye. Lasers Light Ophthalmol 1989; 2: 223-231
  • 19 Fankhauser F, van der Zypen E, Kwasniewska S, Loertscher H-P. The effect of thermal mode Nd: YAG laser radiation on vessels and ocular tissues. Experimental and clinical findings. Ophthalmology 1985; 92: 419-426
  • 20 van der Zypen E, Fankhauser F, Kwasniewska S, England C. Transpupillary irradiation of the rabbit retina with the cw-Nd:YAG laser. I. Acute morphologic effects produced using two different pulse forms. Invest Ophthalmol Vis Sci 1990; 31: 29-40
  • 21 Halldorson T. Alteration of optical and thermal properties of blood by Nd:YAG laser irradiation. In: Frontiers in Laser Medicine and Surgery Atsumi K. (ed). Excerpta Medica; Amsterdam: 1988: 98-105
  • 22 Motamedi M, Rastegar S, LeCarpentier G, Welch AJ. Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index. Appl Optics 1989; 28 (12) 2230-2237
  • 23 Ariss SA. Effects of temperature on red blood cell morphology: Correlation with hemolysis and viscoelasticity of blood. Master of Science Thesis University of Texas; Austin, Texas:
  • 24 Banga I, Baló J, Szabó D. Contraction and relaxation of collagen fibres. Nature 1954; 174: 788-789
  • 25 Banga I, Baló J, Szabó D. Submicroscopic structure of collagen fibres: their contraction and relaxation. Acta Morphol Acad Sci Hung 1956; 6: 391-402
  • 26 Banga I, Baló J, Szabó D. The procollagen, as a component of collagen fibres. Acta Physiol Acad Sci Hung 1956; 9: 61-72
  • 27 Gustavson KH. (ed). The Chemistry and Reactivity of Collagen. Academic Press Inc; New York: 1956
  • 28 Brown PC, Consden R. Variation with age of shrinkage temperature of human collagen. Nature 1958; 181: 349-350
  • 29 Maser MD, Rice RV. The denaturation and renaturation of earthworm-cuticle collagen. Biochim Biophys Acta 1963; 74: 283-294
  • 30 Deak G, Romhanyi G. The thermal shrinkage process of collagen fibres as revealed by polarization optical analysis of topooptical staining reactions. Acta Morphol Acad Sci Hung 1967; 15: 195-208
  • 31 Rigby BJ. Relation between the shrinkage of native collagen in acid solution and the melting temperature of the tropocollagen molecule. Biochim Biophys Acta 1967; 133: 272-277
  • 32 McClain PE, Pearson AM, Miller ER, Dugan Jr LR. Application of differential thermal analysis to the study of hydrothermal shrinkage in epimysial and corium collagen. Biochim Biophys Acta 1968; 168: 143-149
  • 33 Finch A, Ledward DA. Shrinkage of collagen fibres: a differential scanning calorimetric study. Biochim Biophys Acta 1972; 278: 433-439
  • 34 Mathews MB. Connective tissue macromolecular structure and evolution. In: Molecular Biology, Biochemistry and Biophysics Kleinzeller A, Springer GF, Wittmann HG. (eds). Springer-Verlag; Berlin: 1975. Vol. 19
  • 35 van der Zypen E, Fankhauser F, Bebie H, Marshall J. Changes in the ultrastructure of the iris after irradiation with intense light. A study of long-term effects after irradiation with argon ion, Nd:YAG and Q-switched ruby lasers. Adv Ophthalmol 1979; 39: 59-180
  • 36 Wilner GD, Nossel HL, LeRoy EC. Activation of Hageman factor by collagen. J Clin Invest 1968; 47: 2608-2615
  • 37 Sixma JJ, Wester J. The hemostatic plug. Semin Hematol 1977; 14: 265-299
  • 38 Solum NO. Platelet membrane proteins. Semin Hematol 1985; 22: 289-302