Thromb Haemost 1991; 66(01): 016-031
DOI: 10.1055/s-0038-1646368
Review Article
Schattauer GmbH Stuttgart

The Structures of Domains of Blood Proteins

Alexander Tulinsky
Further Information

Publication History

Publication Date:
25 July 2018 (online)

 
  • References

  • 1 Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985; 41: 657-663
  • 2 Park CH, Tulinsky A. Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1. Biochemistry 1986; 25: 3977-3982
  • 3 Tulinsky A, Park CH, Skrzypczak-Jankun E. Structure of prothrombin fragment 1 refined at 2.8 A resolution. J Mol Biol 1988; 202: 885-901
  • 4 Harlos K, Boys CWG, Holland SK, Esnouf MP, Blake CCG. Structure and order of the protein and carbohydrate domains of prothrombin fragment 1. FEBS Letters 1987; 224: 97-103
  • 5 Mulichak AM, Tulinsky A. Structure of the lysine-fibrin binding subsite of human plasminogen kringle 4. Blood Coag and Fibrinoly 1990; 1: 673-679
  • 6 Tulinsky A, Wu T-P, Padmanabhan K, Mulichak AM. The refined structure of the ε-aminocaproic acid complex of human plasminogen kringle 4. submitted
  • 7 deVos A, Ultsch M, Kelley R, Padmanabhan K, Tulinsky A, Kossiakoff AA. Crystal structure of the kringle 2 domain of tissue-type plasminogen activator. submitted
  • 8 Atkinson RA, Williams RJP. Solution structure of the kringle 4 domain from human plasminogen by H nuclear magnetic resonance spectroscopy and distance geometry. J Mol Biol 1990; 212: 541-552
  • 9 Byeon IL, Kelley RF, Llinas M. Kringle-2 domain of the tissue-type plasminogen activator; 1H-NMR assignments and secondary structure. Eur J Biochem, in press
  • 10 Soriano-Garcia M, Park CH, Tulinsky A, Ravichandran KG, Skrzypczak-Jankun E. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry 1989; 28: 6805-6810
  • 11 Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J. The refined 1.9A crystal structure of human a-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J 1989; 8: 3467-3475
  • 12 Qiu X, Tulinsky A. unpublished results
  • 13 Rydel TJ, Ravichandran KG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton II JW. The structure of a complex of recombinant hirudin and human α-thrombin. Science 1990; 249: 277-290
  • 14 Grutter MG, Priestle JP, Rahuel J, Grossenbacher H, Bode W, Hofsteenge J, Stone SR. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibitor. EMBO J 1990; 9: 2361-2365
  • 15 Rydel TJ, Tulinsky A, Bode W, Huber R. The refined structure of the hirudin-thrombin complex. J Mol Biol, in press
  • 16 Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, Tulinsky A, Westbrook M, Maraganore JM. The structure of the hirugen and hirulog 1 complexes of α-thrombin. J Mol Biol, in press.
  • 17 Bode W, Huber R, Rydel TJ, Tulinsky A. X-ray crystal structures of human α-thrombin and the human thrombin-hirudin complex. "Thrombin: Structure and Function". Berliner LJ. Ed Plenum Publishing Corp, New York: in press
  • 18 Holland SK, Harlos K, Blake CCF. Deriving the generic structure of the fibronectin type II domain from the prothrombin kringle 1 crystal structure. EMBO J 1987; 6: 1875-1880
  • 19 Montelione GT, Wuthrich K, Nice EC, Burgess AW, Scheraga HA. Solution structure of murine epidermal growth factor: Determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry. Proc Natl Acad Sci USA 1987; 84: 5226-5230
  • 20 Cooke RM, Wilkinson AJ, Baron M, Pastore A, Tappin MJ, Campbell ID, Gregory H, Sheard B. The solution structure of human epidermal growth factor. Nature 1987; 327: 339-341
  • 21 Baron M, Norman D, Willis A, Campbell ID. Structure of the fibronectin type 1 module. Nature 1990; 345: 642-646
  • 22 Constantine KL, Ramesh V, Banyai L, Trexler M, Patthy L, Llinas M. Sequence-specific 1H NMR assignments and structural characterization of bovine seminal fluid protein PDC-109 domain b. Biochemistry 1991; 30: 1663-1672
  • 23 Seshadri TP, Tulinsky A, Skrzypczak-Jankun E, Park CH. The structure of bovine prothrombin fragment 1 refined at 2.25 A resolution. J Mol Biol, in press
  • 24 Trexler M, Patthy L. Folding autonomy of the kringle 4 fragment of human plasminogen. Proc Natl Acad Sci USA 1983; 80: 2457-2461
  • 25 Mulichak AM, Park CH, Tulinsky A, Petros AM, Llinas M. Human plasminogen kringle 4. Crystallization and preliminary diffraction data of two different crystal forms. J Biol Chem 1989; 264: 1922-1923
  • 26 Lerch PG, Rickli EE, Lergier W, Gillessen D. Localization of individual lysine-binding regions in human plasminogen and investigation on their complex-forming properties. Eur J Biochem 1980; 107: 7-13
  • 27 Trexler M, Vali Z, Patthy L. Structure of the omega-aminocarboxylic acid-binding sites of human plasminogen. Arginine 70 and aspartic acid 56 are essential for binding of ligand by kringle 4. J Biol Chem 1982; 257: 7401-7406
  • 28 van Zonneveld J-J, Veerman H, Pannekoek H. On the interaction of the finger and the kringle 2 domain of tissue-type plasminogen activator with fibrin. J Biol Chem 1986; 261: 14214-14218
  • 29 Winn ES, Hu S-P, Hochschwender SM, Laursen R. Studies on the lysine-binding sites of human plasminogen. The effect of ligand structure on the binding of lysine analogs to plasminogen. Eur J Biochem 1980; 104: 579-586
  • 30 Vali A, Patthy L. The fibrin-binding site of human plasminogen. Arginines 32 and 34 ar essential for fibrin affinity of the kringle 1 domain. J Biol Chem 1984; 259: 13690-13694
  • 31 Tulinsky A, Park CH, Mao B, Llinas M. Lysine/fibrin binding sites of kringles modelled after the structure of kringle 1 of prothrombin. Proteins 1988; 3: 85-96
  • 32 Trexler M, Banyai L, Patthy L, Pluck ND, Williams RJP. Chemical modification and nuclear magnetic resonance studies of human plasminogen kringle 4 - Assignment of tyrosine and histidine resonances to specific residues in the sequence. Eur J Biochem 1985; 152: 439-446
  • 33 Kelley R, deVos A, Cleary RF. Thermodynamics of ligand binding and denaturation for His64 mutants of the TPA kringle 2 domain. Proteins, in press
  • 34 DeMarco A, Laursen RA, Llinas M. Proton NMR spectroscopic manifestations of ligand binding to the kringle 4 domain of human plasminogen. Arch Biochem Biophys 1986; 244: 727-741
  • 35 Ramesh V, Petros AM, Llinas M, Tulinsky A, Park CH. Proton magnetic resonance study of lysine-binding to the kringle 4 domain of human plasminogen. J Mol Biol 1987; 198: 481-498
  • 36 DeMarco A, Laursen RA, Llinas M. Proton Overhauser experiments on kringle 4 from human plasminogen. Implications for the structure of the kringles hydrophobic core. Biochim Biophys Acta 1985; 827: 369-380
  • 37 Petros AM, Gyenes M, Patthy L, Llinas M. Analysis of the aromatic 1H NMR spectrum of chicken plasminogen kringle 4. Arch Biochem Biophys 1988; 264: 192-202
  • 38 Hochschwender SM, Laursen RA. The lysine binding sites of human plasminogen. Evidence for a critical tryptophan in the binding site of kringle 4. J Biol Chem 1981; 257: 11172-11176
  • 39 Horlos K, Holland SK, Boys CWG, Burgess AI, Esnouf MP, Blake CCF. Vitamin K-dependent blood coagulation proteins form hetero-dimers. Nature 1987; 330: 82-84
  • 40 Nelsestuen GL. Role of γ-carboxyglutamic acid. J Biol Chem 1976; 254: 5648-5656
  • 41 Prendergast FG, Mann KG. Differentiation of metal ion-induced transitions of prothrombin fragment 1. J Biol Chem 1977; 252: 840-850
  • 42 Bloom JW, Mann KG. Metal ion induced conformational transitions of prothrombin and prothrombin fragment 1. Biochemistry 1978; 17: 4430-4438
  • 43 Tulinsky A, Park CH. Structure of prothrombin fragment 1 and its relation to calcium binding. "Current advances in vitamin K research.". JW Suttie. Ed 1988. Elsevier Publishing Co Inc, New York: 295-304
  • 44 Olsson G, Andersen L, Lindquist O, Sjolin L, Magnusson S, Petersen TE, Sottrup-Jensen L. A low resolution model of fragment 1 from bovine prothrombin. FEBS Letters 1982; 145: 317-322
  • 45 Weber LD, Tulinsky A, Johnson JD, El-Bayoumi MA. Expression of functionality of α-chymotrypsin. The structure of a fluorescent probe-α-chymotrypsin complex and the nature of its pH dependence. Biochemistry 1979; 18: 1297-1303
  • 46 Welsch DJ, Nelsestuen GL. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Biochemistry 1988; 27: 4939-4945
  • 47 Welsch DJ, Nelsestuen GL. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change. Biochemistry 1988; 27: 4946-4952
  • 48 Skrzypczak-Jankun E, Rydel TJ, Tulinsky A, Fenton II JW, Mann KG. Human D-Phe-Pro-Arg-CH2-α-thrombin crystallization and diffraction data. J Mol Biol 1989; 206: 755-757
  • 49 Boissel J-P, Le Bonniec B, Rabiet M-J, Labie D, Elion J. Covalent structures of β and γ autolytic derivatives of human α-thrombin. J Biol Chem 1984; 259: 5691-5697
  • 50 Kawabata S, Morita R, Iwanaga S, Igarashi H. Staphylocoagulase-binding region in human prothrombin. J Biochem (Tokyo) 1985; 97: 325-331
  • 51 Brezniak DV, Brower MS, Witting JI, Walz DA, Fenton II JW. Human α- to ξ-thrombin cleavage occurs with neutrophil cathepsin G or chymotrypsin while fibrinogen clotting activity is retained. Biochemistry 1990; 29: 3536-3542
  • 52 Huber R, Bode W. Structural basis of the activation and action of trypsin. Acc Chem Res 1978; 11: 114-122
  • 53 Read RJ, James MNG. Introduction to protein inhibitors: x-ray crystallography. "Proteinase Inhibitors.". Barrett AJ, Salveen F. eds. 1986. Elsevier, Amsterdam: 301-336
  • 54 Markwardt F. Hirudin is an inhibitor of thrombin. Method Enzymol 1970; 19: 924-932
  • 55 Stone SR, Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 1986; 25: 4622-4628
  • 56 Fenton II JW. Thrombin specificity. Ann NY Acad Sci 1981; 370: 468-495
  • 57 Chang J-Y. The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett 1983; 164: 307-313
  • 58 Krstenansky JL, Mao SJT. Antithrombin properties of C-terminus of hirudin using synthetic unsulfated Nα-acetyl-hirudin 45-65. FEBS Lett 1987; 211: 10-16
  • 59 Bourdon P, Fenton II JW, Maraganore JM. Affinity labeling of lysine-149 in the anion-binding exosite of human α-thrombin with an Nα-(dinitrofluorobenzyl)hirudin C-terminal peptide. Biochemistry 1990; 29: 6379-6384
  • 60 Ni F, Konishi Y. Thrombin-bound conformation of the C-terminal fragments of hirudin determined by transferred nuclear Overhauser effects. Biochemistry 1990; 29: 4479-4489
  • 61 Maraganore JM. Synthetic fragments of hirudin. "Protein C and Related Anticoagulants.". DF Bruley, WN Drohan. Eds. Gulf Publishing Co., Houston: 1990: 103-118
  • 62 DiMaio J, Gibbs B, Munn D, Lefebvre J, Ni F, Konishi Y. Bifunctional thrombin inhibitors based on the sequence of hirudin 45 65. J Biol Chem 1990; 265: 21698-21703
  • 63 Folkers PJM, Clore GM, Driscoll PC, Dodt J, Kohler S, Gronenborn AM. Solution structure of recombinant hirudin and the Lys47 → Glu mutant: A nuclear magnetic resonance and hybrid geometry-dynamical simulated annealing study. Biochemistry 1989; 28: 2601-2617
  • 64 Haruyama H, Wuthrich K. Conformation of recombinant desulfato hirudin in aqueous solution detrmined by nuclear magnetic resonance. Biochemistry 1989; 28: 4301-4312
  • 65 Bourdon P, Witting J, Fenton II JW, Maraganore JM. Hirulogs: interaction with the catalytic site and adjacent regions of human thrombin. submitted
  • 66 Rydel TJ, Tulinsky A. unpublished results