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Signal Processing

Signal processing is generally
referred to as the technique to analyze
time domain series acquired from a
physical phenomenon, representing
some physical time-varying magnitude.
Signals can be of different nature: one-
dimensional continuous signals (e.g.
bioelectric signals, speech, etc); two-
dimensional signals (images, etc); three-
dimensional signals (video, etc).
However, when we use the term signal
we will tacitly refer here (and in many
references) to one-dimensional
signals. One-dimensional signals can
also be continuous or discrete in
time. The latest are such either by
nature or by discretization of a
continuous signal, as is usually the
case in biomedical signal analysis.
These time-discrete one-dimensional
signals have been subjected to the
huge development of the information
processing techniques of the last
decades, particularly to signal proc-
essing techniques focusing on obtaining
the information of interest carried by
the signal.

In the biomedical system field,
Electrocardiogram (ECG), Electro-
encephalogram (EEG), and to a lower
extent Electromyogram (EMG)
bioelectric signals possess a broader
history in signal processing develop-
ment. The aim has always been to
obtain relevant information to diag-
nose, evaluate, monitor, and/or
follow-up the physiological system
under study. Special and separate atten-

tion has been given to the voice signal.
This pressure signal, converted to
electrical signal by a microphone
transducer and of biological origin, has
been the subject of many signal
processing developments in the context
of communication (speech recognition,
synthesis, enhancement, etc). In the
particular use of biomedical application
synthesis is playing a major role in
helping the speech impaired. Also the
transient evoked otoacoustic emissions
(TEOAE), generated by the cochlea
as response to acoustic stimuli, are
of interest for hearing impaired
identification. The five selected
papers for the signal processing section
of the 2002 Yearbook deal with EEG,
ECG and TEOAE.

Signal processing is a very useful
technique in many biomedical applica-
tions. Therefore, it should be restated
that most biological system diagnosis
involving biomedical signals can be
done, and in most cases largely outper-
formed, by more elaborate techniques,
such as imaging, invasive test, etc..
These techniques, even with their
better sensitivity and specificity, present
two major drawbacks: the price paid
by the patient or the public health
system, which has made them prohib-
itive for massive screening, and the
invasive aspect, resulting in highly
uncomfortable procedures for the
patient with collateral risks in some
cases. These two reasons still make it
very challenging to push signal process-

ing techniques developments that
improve actual levels of sensitivity/
specificity in the related domain
diagnosis. Both low cost and non-
invasive techniques are important
aspects of signal processing. Recording
equipment today is within very
acceptable price ranges, and processing
has been implemented in  computers
today. Limitations of the computers are
often procedural rather than computa-
tional. These two properties are very
valuable in screening large populations
and in pathologies associated with large
prevalence, such as cardiac disorders in
western countries.

In the last decades, signal processing
researchers have developed well-
established linear time-discrete signal
processing techniques. Linear
processing allows accounting for most
of the phenomena that can be modeled
as linear, or whose real behavior is not
far from being linear. Thus the signal
can be filtered to separate undesired
components, or those originated in a
biological subsystem other than the
one under study. The system
parameters that generate the signal
can, in many cases, be estimated based
on linear system identification
techniques. From these system
parameters, clinically valuable indices
can be inferred. Examples are spectral
analysis in EEG for sleep analysis,
ECG filtering (to remove the EMG and
baseline wander that essentially lies on
different frequency bands), heart rate
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variability (HRV) analysis to identify
the influence the central nervous system
has on rhythm by evaluating the relative
frequency band power content, etc..

In many cases, linear techniques
alone are not enough to extract clinically
relevant information. Therefore, other
ad hoc rules are introduced to the
linear analysis, depending on its
purpose. Examples of these structures
are: threshold based QRS detectors to
combine linear and non-linear
techniques (such as squaring with
threshold decision rules), fiducial
point identification in ECG wave
analysis with threshold based rules,
arrhythmia analysis and beat type
identification systems (requiring
feature extraction from linearly
processed signals plus some classi-
fication criteria), high frequency
indices extraction to stratify post
myocardial infarction patients at risk
of sudden cardiac death (late
potentials or intra-QRS potentials),
ischemia detection and monitoring,
otoacoustic emission detection. Many
of these ad hoc techniques can be
studied using detection or estimation
theory, after which the optimum rules
can be estimated from the statistics of
the problem.

Beside measuring particular signal
parameters, the problem of identifying
hidden parameters has also been
addressed. These parameters give
relevant information for some
diagnostic objective that is not apparent
in signal visual inspection or its
automated, measured descriptive
parameters. This is often addressed by
statistical signal processing in reference
to data from documented patient
databases and should be investigated
further by prospective studies. The
classification rules, typically used to
separate patient groups, can be linear
(MANOVA) or non-linear, such as
higher order classifiers or neural
networks. In terms of patient screening

and decision rules based on signal-
extracted parameters, neural network
non-linear classifiers have developed
greatly. They possess better classi-
fication properties than linear rules and
often involve simpler algorithmic
implications. These nonlinear inter-
polators are always based on the
availability of an appropriate training
set with which the network can be
trained and further studies conducted.

In addition to the ad hoc non-linear
rules introduced in many parts of signal
processing, linear approximations are
often far from the reality of biological
systems, in which very complex
cross-systems influences take part.
This implies that linear analysis of
the signals generated by the system
gets lost within the system. Frequently,
if we were able to study the non-linear
relationships within the signal in a way
related to the non-linearity inherent in
the system, we will be able to gain
better insight into the physiological
processes than by just using linear
strategies. Non-linear signal pro-
cessing is under development and
some indices based on chaos studies,
fractal dimension of signal etc. are
being considered to extract useful
information from signals that usually
remains hidden in linear analysis.
These indices will add strength to
signal analysis if they are able to relate
closely to the underlying physiological
mechanisms of the system. Since these
mechanisms are often unknown, and
non-linear signal analysis can be
performed in many ways with a less
well-established framework than linear
analysis, in my opinion, more fun-
damental work is still required to assess
the real impact of these techniques and
to obtain the most suitable non-linear
representation in each case. Examples
of these non-linear approaches are
the studies on heart rate variability
carried out in the past decade, and the
similarity index to predict seizures [4]
in EEG analysis.

The phenomenon behind biomedical
signals is typically spatial and requires
at least three orthogonal dimensions
(signals) to describe it. Analysis
recordings are well established in
cardiac and brain multi-channel (leads).
Time-space signal processing tech-
niques have also recently been explored
to diagnose brain and cardiac dys-
function. These techniques, within the
scope of the author, still have room to
grow, since they have not achieved
maximum possible information
extraction.

The five selected papers for this
section on signal processing deal with
three types of biomedical signals:
Electrocardiogram [1], otoacoustic
emissions [2], and Electroencephalo-
gram [3, 4, 5]. The paper by Zigel et al.
[1], proposes very important ECG data
compression evaluation strategies. One
of the main evaluation strategies of
signal data compression is the use of
mathematical distortion measures as
percentile root mean square difference
(PRD) which is a quadratic norm of
the differences between original and
reconstructed signal. Other alternatives
have introduced linear norms. In any
case, this gives a general idea of the
shape distance (measured sample by
sample) between the signals. However,
interest in the biomedical signal is not in
the overall waveshape, but in the clinical
information carried by the signal. A
reduced PRD, or its variations, does
not guaranty the preservation of the
clinical information. The introduced
Weighted Diagnostic Distortion
(WDD) index evaluates the difference
between the clinical parameters
measured in the original and the
reconstructed signals (waves ampli-
tudes, intervals duration, etc.) and is
much more suitable for the purpose of
clinical diagnoses. It will be desirable
in the future for data compression
techniques to measure their per-
formance with these or related alter-
native indices rather than mathematical
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ones. A mean opinion score (MOS)
given by expert cardiologists in terms
of diagnosticability has been used to
compare the WDD and the classical
PRD. Not surprisingly, the WDD
correlated much better with the expert
MOS, corroborating the convenience
of using this kind of WDD index to
evaluate data compression algorithms.
This approach is parallel to coders
evaluations in speech processing. Here,
the overall waveshape is not of interest,
but the perception of the listener when
listening to the reconstructed signal.

The approach presented by
Janušaukas et al. in [2] deals with the
pass/fail separation problem for
hearing impairment screening. The
otoacoustic emissions are carefully
analyzed both in time and frequency
to design ad hoc linear processing
detection strategies. Different time
windows are taken from the elicited
stimulus as functions of the frequency
bands under analysis, according to
the different lags of the three different
bands reported for these emissions.
The very poor signal to noise ratio of
this signal is treated in the wavelet
transform domain by clipping (time-
varying linear operation) the
coefficients under some selected
threshold and thus just keeping those
components of dominant energy at
the averaged TEOAE. This operation
is performed on two subaverage sets
of TEOAE. If the obtained signal is
not noise, it should present correlation
between the two subaverages. This
correlation at three different wavelet
scales is used to decide the pass/fail
strategy using a threshold based rule.
For a sensitivity of 90%, the received
operating curves (ROC) evaluated on
a very large subject database allow an
increase in specificity from 68%
(classical detection methods) to 90%,
which is a remarkable improvement.
This paper corroborates that fine
knowledge of the signal under study
and its underlying mechanisms allow

ad hoc signal processing refinement
which results in further improvement.
More elaborated decision rules or
similarity measures from the two
subaverages TEOAE will probably
be the direction to pursue in these kind
of studies.

The remaining three papers [3, 4, 5]
deal with the EEG problem. This signal
is more random in nature than ECG or
TEOAE. The mechanisms of brain
behavior are more complex and make
the inference of valuable clinical
decisions from the EEG more difficult.
The EEG represents a spatio-temporal
summation of the total brain activity.
The difficulty in obtaining information
from the EEG is reduced when the
objective is to locate areas of particu-
larly intense activation as in epileptic
patients, or in evoked responses to a
particular stimuli.

The paper by Zhukov et al. [3]
presents a very interesting strategy to
integrate most of the available develop-
ments in identifying source location
(if a single source is assumed) and
extends this technique to multifocal
source location. The work assumes
that the different focuses are not
correlated. By using Independent
Component Analysis (ICA), it
separates the EEG component
related to each focus. Single focus
techniques are then applied. The
computational load is greatly reduced
and more effective results in this
simpler case of the single-focus inverse
problem in Electroencephalography are
achieved. First, it achieves noise
reduction by applying principal
component analysis. After using the
ICA techniques, it isolates every focus-
related EEG component. Since the
inverse EEG source location is an ill-
posed problem, there is no guarantee
that the solution is correct, due to the
solution’s multiplicity. In simulations,
the work reports precision in locating
the focuses between 2 and 5 mm.

The work presented by le van Quyen
et al. [4] deals with well in advance
prediction of epileptic seizure. This
will be especially useful in uncontrolled
epilepsy patients, allowing application
of preventive measures and improve-
ment of quality of life. The rational
behind the work is to compare, from
the non-linear point of view, scalp-
EEG signals time windows from a
reference period and a running window
recording. Since the recordings are
highly noisy, many non-linear
techniques fail due to the noise
influence. In this work, a similarity
index based on zero crossing of the
signal which makes the noise influence
very limited, is used. A threshold based
rule is then used to decide when the
time window under analysis is different
from the reference one. In a set of 23
patients with temporal-lobe epilepsy
(TLE), the anticipation of the seizures
was 416 s (SD 356), suggesting that
the preictal state is a process which
largely varies within individual patients.
Details about the non-linear technique
are referred to the appendix in
www.thelancet.com. The finding that
similar results can be obtained from
the scalp-EEG and from intracranial
recordings is both surprising and
challenging. Surprising, because the
scalp-EEG is an attenuated and blurred
version of the intracranial activity and
challenging, because of the conven-
ience in practical clinical implications.

The work by Gonzalez Andino et
al. [5] also deals with EEG signal
analysis.  They try to infer
neurophysiological activation with
measures of signal complexity. They
assume that signals of low complexity
belong to organized sources, and
signals of high complexity belong to
unorganized sources and represent
noise or unstructured activation. In
this work, the time-frequency
representation of the signal is per-
formed, and, in the time-frequency
plane, the Renyi entropy throughout
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the Renyi number is computed. This
number gives an estimate of the degree
of ordering in the signal. If the signal is
organized with well defined elementary
function in the time frequency plane,
the degree of complexity will be low. If
no elementary function can be identified
at the frequency plane, the Renyi
number will be low representing a
higher degree of complexity and no
relation with synchronized activity. This
technique allows cerebral maps of
activation areas according to the Renyi
number at each lead. This approach, in
addition, does not require strong
assumptions about noise statistics and
is less restricted than other techniques
with the same objective.
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