O-Annulation Leading to Five-, Six-, and Seven-Membered Cyclic Diaryl Ethers Involving C–H Cleavage

Alexandre Rossignon, Davide Bonifazi

Abstract Cyclic diaryl ethers are present in multiple natural compounds, organic pollutants as well as in \(\pi \)-conjugated organic molecular materials. This short review aims at overviewing the main synthetic advances in the O-annulation methods for preparing five-, six-, and seven-membered rings through C–H cleavage.

1 Introduction

Cyclic diaryl ether motifs are found in a large variety of organic molecules, spanning from natural products to polycyclic aromatic hydrocarbon (PAHs) structures (Figure 1). The antibiotic drug Vancomycin is probably the most famous structure.\(^1\) Other examples include Vicanicin, a lichen second metabolite depsidone exhibiting antitumor activity,\(^2\) and Asterelin A, an antifungal drug (Figure 1, top).\(^3\)

Concerning artificial cyclic ethers, the polychlorinated dibenzo-\(\pi \)-dioxins and polychlorinated dibenzofurans are certainly the most infamous examples, being in the ’Dirty Dozen’ list of Persistent Organic Pollutants (POPs) (Figure 1, centre).\(^4\) Cyclic ethers also constitute the core of O-doped...
polycyclic aromatic hydrocarbons (PAHs), a class of electron-rich aromatics used to engineer organic semiconductors (Figure 1, bottom). For instance, derivatives of Pummerer’s peri-xanthenoxanthene (PXX) have been used as organic semiconductors for engineering the first Sony’s ‘Rollable OTFT-driven OLED that can wrap around a Pencil’.3

2H-Pyran-based dithienopyran (DTP)4 and dibenzopyran (DBP)5 motifs were introduced as the electron-donating moiety in donor-acceptor (D–A) type conjugated copolymers to engineer solar cells with high power conversion efficiencies (PCEs). Molecular units based on 9-[3-(dibenzo[b,d]furanyl)phenyl]-9H-carbazole (DFPCz) scaffold have been used as organic phosphors in PHOLEDs.6

Very interesting p-type organic semiconductor based on O-doped quinoidal pentacenes and nonacenes were recently prepared following a cross-condensation route.7 At the synthetic planning level, cyclic diaryl ethers are usually prepared through an intramolecular coupling reaction between a phenol moiety and a pre-functionalized aryl substrate. In particular, two routes have been mostly exploited:

(i) transition-metal-catalysed C–O cross-coupling reactions (i.e., Buchwald–Hartwig,8 Ullmann etherification,9 and Chan–Lam–Evans10 coupling), and (ii) nucleophilic aromatic substitution reactions.11,12 Both synthetic approaches rely on the use of electrophilic aromatic halides or strong acidic conditions to ensure the ‘activation’ of the aryl substrate and control the regioselectivity of the addition reaction (Scheme 1).

Also, the electrophilic partner needs to be pre-functionalised at a given position with electron-withdrawing groups (EWGs) and undergoes metal-arene formation,13 diaryl iodonium salt,14 and in situ formation of benzyne species15 to favour the relevant addition reaction (Scheme 1). Cross-condensation reaction promoted by strong acids is also a valuable route when the substrate is not acid-sensitive.16 The interested reader can refer to recent reviews tackling these synthetic routes.17 A more attractive route would involve the formation of a cyclic diaryl ether through direct C–H functionalisation of an aryl substrate with a giv-
en phenolic moiety. It is with this aim that in this review paper we describe the recent synthetic developments tackling the formation of cyclic diaryl ethers using an intramolecular etherification route involving a C–H cleavage reaction. This review will provide an exhaustive picture of the synthetic plans involving the specific reactions and substrates to give five-, six-, and seven-membered rings.

2 Five-Membered Rings: The Dibenzo furan (DBF) Motif

2.1 Palladium-Catalysed C–H Activation

In 2011, Liu and co-workers\(^{18}\) described the first transition-metal-catalysed cyclisation reaction involving a C–H activation/C–O bond formation to obtain dibenzofuran derivatives by aerobic oxidation starting from 2-phenylphenol. Their method involves the use of Pd(OAc)\(_2\), 1,3-bis(2,6-di-isopropylphenyl)imidazole-2-ylidene (IPr), mesitylene carboxylate (MesCOONa), 4,5-diazafuoren-9-one as ancillary ligands, and K\(_2\)CO\(_3\) (Scheme 2). The use of the anionic ligand MesCOONa serves as a proton shuttle to promote C–H activation and 4,5-diazafuoren-9-one to favour the aerobic oxidation of the Pd(0)-based species to active Pd(II) complexes. Substrates bearing electron-donating groups (EDGs: amine, ether, ketal, and silyl) as well as electron- withdrawing groups (EWGs: cyano, ketone, nitro, amide, ester, sulfonamide, fluoride, chloride, and trifluoromethyl) on both the aryl and phenol moieties were used. Kinetic isotope effect (KIE) investigations suggested that the rate determining step is the C–H bond cleavage yielding dibenzofuran. As described for the reaction above, also in this case the C–O bond formation occurs at the least sterically hindered position. Notably, substrates bearing either EWGs or EDGs tolerate the oxidative reaction conditions. Building on this work, Schmidt and Riemer\(^{20}\) recently described a microwave-promoted cyclisation protocol, in which oxidative C–H activation using catalytic amounts of Pd(OAc)\(_2\) could be used to prepare DBFs. The reaction works under water-free conditions in non-protonic solvents such as benzene and ethereal solvents (THF, MTBE, DME, or DDME).

![Scheme 2 Palladium-catalysed DBF formation reported by Liu and co-workers\(^{18}\)](image)

In parallel, Wei and Yoshikai\(^{19}\) developed a base-free method using Pd(OAc)\(_2\) and 3-nitropyridine as the ligand (Scheme 3). Under these conditions, aerobic oxidation is inefficient and BzOttBu was used as an inexpensive oxidant for the regeneration of the active palladium species. Mixture of aromatic and Lewis-basic solvents, such as C\(_6\)F\(_5\) and DMF (1,3-dimethyl-2-imidazolidinone) (3:2 ratio), gave the highest yield. With respect to Liu’s Pd-catalysed cycloetherification reaction, in this case, KIE investigations suggests that the rate determining step is the C–H bond cleavage (k\(_{H}^k_{O} = 1.9\)). Building on these kinetic studies, and considering that BzOttBu is a stronger oxidant than O\(_2\), the authors suggested that the reaction is initiated by a C–H bond cleavage through the formation of pallada(II)cycle intermediate 3. The latter is subsequently oxidised by BzOttBu to give pallada(IV)cycle 4. The latter intermediate can reductively eliminate a Pd(II) specie, forming the C–O bond, and yielding dibenzofuran. As described for the reaction above, also in this case the C–O bond formation occurs at the least sterically hindered position. Notably, substrates bearing either EWGs or EDGs tolerate the oxidative reaction conditions. Building on this work, Schmidt and Riemer\(^{20}\) recently described a microwave-promoted cyclisation protocol, in which oxidative C–H activation using catalytic amounts of Pd(OAc)\(_2\) could be used to prepare DBFs. The reaction works under water-free conditions in non-protonic solvents such as benzene and ethereal solvents (THF, MTBE, DME, or DDME).

![Proposed mechanism for the palladium-catalysed DBF formation reported by Wei and Yoshikai\(^{19}\)](image)

In 1980, Kappe and co-workers presented a non-CH activated Pd-catalysed diaryl ether formation relying on cyclodehydrogenation of 4-hydroxy-3-phenylquinolinone 5, quinolinylphenol 7, and hydroxyphenylphenalenone 9 to prepare the corresponding furan derivatives 6, 8, and 10 (Scheme 4).\(^{21}\) This method was further used to synthesise biologically active benzofuroquinolinone.\(^{22}\)
2.2 Copper-Mediated C–H Activation

In 2012, Zhu and co-workers published three papers on the dibenzofuran synthesis through C–H bond cleavage/C–O bond formation using Cu-based catalysts.23–25 The use of copper is more convenient compared to other transition metals as it is considerably cheaper and compatible with O2. However, the presence of relatively strong EWGs on the phenolic ring (e.g., nitro, cyano, and carbonyl groups) is required to overcome undesired homocoupling of phenols or phenolic ring (e.g., nitro, cyano, and carbonyl groups) is required to overcome undesired homocoupling of phenols or other side-reactions usually promoted by copper. In the first protocol, CuBr was used (30%) in the presence of Cs2CO3, and pivalic acid in the air (Scheme 5).23 Notably, ortho-functionalised substrates did not allow formation of the C–O bond, whereas the meta congeners gave the cyclised products with a 20:1 regioselective ratio toward the least sterically hindered isomer. For substrates bearing bulky substituents such as I or Ph, Cu(OAc)2 was used to avoid the formation of undesired brominated by-products. As mentioned above, the phenolic ring can only bear EWGs, whereas the phenyl ring tolerates both EWGs and EDGs.

Together with a KIE value of 4.5, the absence of proton scrambling suggested that the C–H bond cleavage is the rate-determining step. As studies with competitive reactions between electron-rich and -poor aryl substrates did not give any conclusive results, the authors suggested that the cyclisation reaction could result from either a concerted metalation deprotonation (CMD) mechanism or an electrophilic substitution (Scheme 5, paths a,b, respectively). A radical pathway was excluded as the reaction is not affected by the presence of a radical scavenger such as TEMPO. As there are no evidences for the Cu(I)/Cu(0) couple involvement, the oxidative Cu(III)/Cu(I) cycle could not be completely excluded. In a subsequent work,24 the same authors reported on the development of an efficient Cu-catalysed oxidative C–O bond formation of electron-deficient ortho-phenols containing supplementary directing meta-groups (e.g., NHAc, NHCOPh, 2-pyrrolidone, and NHBoc) on the non-phenolic ring. Together with the hydroxy group, the amidic carbonyl functional group chelates the copper metal centre allowing the reaction to be performed without a base and at low temperatures. Notably, high yields (up to 99%) and a broad substrate scope with full control on the regioselectivity could be achieved with these substrates (Scheme 6). In a later work, Zhu and co-workers reported the first example of a sequential iodination-cycloetherification reaction of o-arylphenols mediated by Cul in the presence of O2.

![Scheme 4](image)

Scheme 4 Palladium-catalysed cyclodehydrogenation for the formation of benzofuranes as developed by Kappe and co-workers.21

![Scheme 5](image)

Scheme 5 Cu-catalysed DBF formation reported by Zhu and co-workers.23 Proposed mechanistic pathways: (path a) concerted metalation deprotonation and (path b) electrophilic metatation.

![Scheme 6](image)

Scheme 6 Cu-catalysed DBF formation reported by Zhu and co-workers.24

This permitted the synthesis of 2- and 4-iododibenzofuran derivatives using Cul as both iodinating agent and catalyst for the C–H activation/C–O bond formation. Iodination of the phenolic ring at either the ortho or para positions depending on the position of the EWG was observed (Scheme 7).22 Notably, a thermal control of the iodination reaction to occur prior to the C–O cyclisation could be obtained. Heating the reaction mixture at 60 °C gave first the iodo-inter-
mediate that, at 140 °C, could be cyclised into the furanyl derivatives in the presence of a stoichiometric amount of Cul (Scheme 8).

This reaction tolerates EWGs (e.g., Cl, F, CF₃, NO₂, CN, and CHO) and EDGs (e.g., Me, OMe, and Ph). Notably, replacing the CuBr with CuI, the corresponding brominated product could be obtained. As in all cases discussed above, the reaction occurs at the least hindered position (regioselectivity 5:1). Capitalising on KIE experiments (4.1) and mechanistic studies using DFT calculations, the authors suggested that the reaction occurs through a pivalate-assisted CMD pathway (Scheme 8) initiated by Cu(III) species. Single electron transfer (SET) or electrophilic aromatic substitution (SEAr) mechanisms were excluded.

2.3 Non-CH Activation Oxidant-Mediated Cyclisation

Other convenient synthetic methods to form furan cycles include oxidation methods that do not involve any direct C–H activation, such as (i) transition-metal-free oxidative cyclisations of phenolic ring and trapping of the reactive intermediate by an hydroxyl group²⁶ (Scheme 9), (ii) intramolecular cyclisation of 2,2'-biphenoquinone²⁷ (Scheme 10), and (iii) oxidation/oxa-Michael cascade reaction (Scheme 11). The latter method relies on the oxidation of a pyrocatechol moiety 31 to the corresponding 1,2-benzoxoquinone 33. Subsequent intramolecular 1,4-addition of the neighbouring hydroxyl groups, followed by a tautomerisation/rearomatisation reactions, gave dibenzofuranes 34 and 32, respectively (Scheme 11). Commonly used oxidants for this transformation are Ag₂O,²⁸ MnO₂,²⁹, and K₃[Fe(CN)₆]³⁰. Capitalising on this reaction, Lu and co-workers prepared derivative 35, an important intermediate for the total synthesis of (±)-anastatins A and B (Scheme 11).³¹
2.4 Light-Mediated Cyclisation

The formation of dibenzofurans was also obtained by photoirradiation of phenols precursors through Excited State Intramolecular Proton Transfer (ESIPT). For example, Wan and co-workers32 observed the formation of diaryl furans in low yield (2–9%) when 1-(2,5-dihydroxyphenyl)naphthalene (36) was exposed under irradiation at 300 nm. Notably, different products were obtained depending on the solvent polarity. For instance, in aprotic solvents, a predominant C–C bond migration was observed yielding 2-(2,5-dihydroxyphenyl)naphthalene (38) and naphthobenzofuran-8-ol (37) as the major (60% yield) and minor (9% yield) products, respectively. In protic solvents, an intramolecular proton transfer followed by electrocyclic ring closure was instead observed, with dihydrobenzoxanthene (40) (53% yield) being the only product (Scheme 12). Molecule 40 can undergo further oxidation to give the pyran derivative.

![Scheme 12](image)

2.5 Acid-Catalysed C–O Cleavage/C–O Formation

Biphenol 41 can be transformed into dibenzofuran 2a through C–O cleavage/C–O formation, likely following a S$_2$Ar mechanism (Scheme 13). This reaction is usually carried out in the presence of either strong Brønsted acids33–35 (e.g., PTSA, TIOH, H$_2$SO$_4$, and HBr), Lewis acids36 (e.g., SnCl$_4$, Al$_2$O$_3$, and zeolite) or noble metal surfaces [e.g., Au(111) and Ag(111)].37 The latter method has been largely reported in the literature for the preparation of organic materials such as O-doped graphenes37 and helicenes.38

![Scheme 13](image)

3 Six-Membered Rings: DBX, PXX, Xanthone, and Their Derivatives

Concerning the six-membered cyclic ethers, these can be classified as: (i) dibenzoxanthenes (DBX), (ii) peri-xanthoxanthenes (PXX), (iii) xanthones (presenting a carbonyl group joining both aromatic cycles), (iv) miscellaneous derivatives featuring both five- and six-membered rings, and (v) phenoxazines.

3.1 Dibenzoxanthenes (DBX)

The first synthetic protocol for the preparation of dibenzoxanthenes (DBX) 43 from a tetra-tert-butylated BINOL derivative was developed in 1963 by Rieche et al.,39 and later optimised by Schneider et al.40 Their methods use K$_3$[Fe(CN)$_6$] yielding DBXs in 38%. In 2001, Xu et al. discovered the almost quantitative formation of DBX using Cu(II)-amine complexes in hot MeOH in the presence of air.41 This method tolerates a large variety of amines with the highest reaction rate observed when using ethanolamine. Moreover, modification of the alcoholic solvent leads to a variety of derivatives bearing different alkyl ether functionality (Scheme 14). Racemic mixture was obtained when a chiral amine was used or optically pure BINOL was selected as starting material. Based on this observation, they proposed a mechanistic pathway involving the oxidation of BINOL42 to naphthoxy radical44, which is in equilibrium with its carbon-centred radical analogue45. The latter radical can be trapped by the alcoholic solvent forming α-alkyloxy ketone46, which could be further oxidised to form DBX43 (Scheme 14). Later, this synthetic method was used for the

![Scheme 14](image)
The first synthesis of PXX dates back to the beginning of the 20th century when Bünzly and Decker described the oxidation of BINOL in the presence of \(\text{K}_3\text{[Fe(CN)]}_6 \). Shortly after, Pummerer used \(\text{Ag}_2\text{O} \), \(\text{CuO} \), and \(\text{Cu(OAc)}_2 \) for the same transformation. In 2001, Tamotsu and co-workers revisited Pummerer’s protocol, with \(\text{Cu(OAc)}_2 \) in aqueous alkaline solution (Table 1).

In 2007, Weinert and co-workers studied the oxidation of 3,3′-disubstituted BINOL in the presence of a sterically encumbered mercury salt, \(\text{Hg[N(SiMe_3)]}_2 \) (50). Based on the equivalent of oxidant involved in the reaction, they were able to isolate monopyranyl pentacyclic 54. In 2012, our group reported the synthesis of PXX and PXX-analogues by adapting Zhu’s protocol for dibenzofuran. Specifically, CuI and pivalic acid in DMSO at 140 °C were used. Song and Swager also reported on the electrochemical cyclisation of BINOL derivatives to yield PXX-thiophene-based conducting polymers. The last to date synthetic protocol for the cyclisation of BINOL to PXX relies on the use of \(\text{CuCl} \) with \(\text{N}-\text{methyldiazole} \) and \(\text{K}_2\text{CO}_3 \) as a base in hot \(m \)-xylene. This method allows not only the formation of PXX at lower temperature, but to perform cascade dimerisation/cyclisation of simple naphthols. Similarly, Fuchs and co-workers used on-surface protocols to produce DBF- and/or PXX-polymers from 6,6′-dibromo-BINOL derivatives.

Building on the Cu-based protocols, our group could achieve the synthesis of extended PXX derivatives. In particular, O-doped armchair 56, 57 and zig-zag 58, 52 molecular ribbons, coloured \(\pi \)-extended PXX 59 and 60, 35 and monoiide(PXXMI)/diimide(PXXDI) derivatives 61 and 62

Table 1 Oxidative Formation of PXX from BINOL

<table>
<thead>
<tr>
<th>Year</th>
<th>Reagents</th>
<th>R</th>
<th>Solvent</th>
<th>Temp/Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>(\text{K}_3\text{[Fe(CN)]}_6)</td>
<td>H</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1914</td>
<td>(\text{Ag}_2\text{O})</td>
<td>H</td>
<td>benzene</td>
<td>80 °C/1 h</td>
<td>–</td>
</tr>
<tr>
<td>1914</td>
<td>(\text{Cu(OAc)}_2/\text{CuO})</td>
<td>H</td>
<td>(\text{PhNO}_2)</td>
<td>280 °C/3 h</td>
<td>52–80</td>
</tr>
<tr>
<td>2001</td>
<td>(\text{Cu(OAc)}_2)</td>
<td>H</td>
<td>(\text{aq NaOH})</td>
<td>r.t./1 h</td>
<td>–</td>
</tr>
<tr>
<td>2007</td>
<td>(\text{Hg}[\text{N(SiMe}_3)]_2)</td>
<td>H, silyl</td>
<td>benzene</td>
<td>85 °C/24 h</td>
<td>49–97</td>
</tr>
<tr>
<td>2013</td>
<td>(\text{Cu(OAc)}_2, \text{O}_2)</td>
<td>n-octyl</td>
<td>ODCB, pyridine</td>
<td>190 °C MWI/3 min</td>
<td>44–56</td>
</tr>
<tr>
<td>2016</td>
<td>(\text{CuI, PrOH, O}_2)</td>
<td>2,4-di-tBuPh</td>
<td>DMSO</td>
<td>140 °C/2 h</td>
<td>94</td>
</tr>
<tr>
<td>2009</td>
<td>(\text{NOBF}_4)</td>
<td>thiophene</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>r.t./6 h</td>
<td>42–78</td>
</tr>
<tr>
<td>2017</td>
<td>(\text{CuCl, NMI, K}_2\text{CO}_3, \text{air})</td>
<td>H, TMS, alkyl, aryI, CO\text{Me}, allyl</td>
<td>(m)-xylene</td>
<td>120 °C/20 h</td>
<td>55–99</td>
</tr>
</tbody>
</table>
were synthesised by our group (Figure 2). In-depth photo-physical and electrochemical studies revealed that all pyranopyran derivatives feature strong electron-donating properties due to their high-lying energy HOMO levels. In particular, PXX, PXXMI, and PXXDI revealed to be strong photoreducers, with PXX featuring the same photoreducing potential as that of the commonly used Ir(III) complexes.

\[\text{Figure 2} \quad \text{Chemical structures of extended PXX-based molecular architectures} \]

3.3 Xanthones

Being xanthones (i.e., 9H-xanthen-9-ones) important building blocks constituting various pharmacological activities, they have been at the centre of a lot interest in synthetic organic chemistry. For example, Norathyriol is a chemopreventive agent that is effective against skin cancer. Daviditin A is used to relax the corpus cavernous smooth muscle, while its Bellidifolin congener is a potent hypoglycemic regulator, improving insulin resistance. Finally, Atroviridin exhibits anti-inflammatory activity and is traditionally used for the treatment of earache (Figure 3). In this regard, research groups have focused on the synthetic methodologies that use biogenetic-type approaches to perform the oxidation of the benzophenone core. Polyhydroxylated and methoxylated derivatives were commonly used as substrates and treated with various oxidants such as K\(_3\)Fe(CN)\(_6\), CrO\(_3\), p-chloraniline, KMnO\(_4\), K\(_2\)S\(_2\)O\(_8\), Mn(OAc)\(_3\), Pb(OAc)\(_4\), DDQ, Ag\(_2\)O, etc. (Scheme 16).

\[\text{Scheme 16} \quad \text{Formation of xanthone by oxidation of polyhydroxylated benzophenone} \]

In some case, enzymatic oxidation, using Horse Radish Peroxidase Laccase or even microorganism as \textit{R. Buffonii}, has been used as well. In the case of silver salts, Fuse et al. suggested a radical mechanism for the formation of 1,7-dihydroxyxanthone. In the proposition, a single electron transfer (SET) to form xanthone ring occurs, generating a radical intermediate stabilised by the 3-hydroxyl group. This is followed by a second SET, resulting in the re-aromatization reaction forming xanthone core (Scheme 17).

\[\text{Scheme 17} \quad \text{Proposed radical mechanism for the formation of 1,7-dihydroxyxanthone} \]

Recently, Suzuki et al. developed the total synthesis of Atroviridin using MnO\(_2\) as oxidant to form the xanthone core. In their case, the proposed mechanism relies on the formation of p-quinone followed by a 1,4-addition of the free hydroxy group leading to keto-tautomer intermediates and silver salts (Scheme 18).

\[\text{Scheme 18} \quad \text{Proposed mechanism for the total synthesis of Atroviridin} \]
3.4 Miscellaneous

3.4.1 Conjugated Addition on Quinone

In 2006, Yoshida reported a synthesis of furanyl and pyranyl derivatives based on the conjugated Cu- and Ni-promoted addition of a hydroxyl group on the adjacent ortho-quinone moiety (Scheme 19).64

During the study of the reaction, they observed that Cu(OAc)$_2$ was the most effective oxidiser, and that the solvent polarity has a strong effect on the regioselective outcome of the cyclisation. For instance, in the case of DMSO, six-membered ring was preferentially obtained (ratio of 4.4:1), whereas in MeNO$_2$ only the five-membered ring was formed. Another method for preparing cyclic diaryl ethers is based on Flash Vacuum Pyrolysis (FVP). The idea of this approach is to generate hydroxyl radical species that undergo an intramolecular cyclisation reaction. However, these reactions are usually low yielding and lack regioselectivity. In their early report, Cardogan and McNab described the cyclisation of 2-(allyloxy) or 2-(benzylloxy)diphenylmethane 81 to produce xanthene 82, fluorene 83, and phenol 84 derivative. In the case of 2-(allyloxy)benzophenone 85, they were able to obtain a mixture of xanthone 86, fluorenone 87, methylbenzylphenol 88, and dibenzofuran 89 (Scheme 20).65

3.4.2 Phenoxazine

Phenoxazines (POZs) are natural organic dyes that can be used in applications such as hole-transporting materials, bio-imaging, dye-sensitised solar cells (DSSCs), and lasers.66 POZs 92 is usually obtained by oxidative cyclisation of 2-(phenylamino)phenol 91 in the presence MnCl$_2$, PbO$_2$, or CoCl$_2$.69 Substrates bearing EWGs (e.g., nitro, cyano, and acetyl groups) revealed to be compatible with the oxidative reaction conditions (Scheme 21).

4 Seven-Membered Rings: Cularines

The most common C–H bond cleavage/C–O bond formation developed so far for engineering O-annulated seven-membered rings is that used for the synthesis of cularines. In 1974, Jackson et al. reported an oxidative intramolecular coupling of tetrahydrobenzylisoquinoline derivatives 93a in the presence of K$_3$[Fe(CN)$_6$] to produce cularine 94a and isocularine 95a in 2.5%, and 5% yield, respectively.70 The
method was improved by using an N-borane complex of 93b, treating it with VOF₃ to yield 94b in 56% yield (Scheme 22).⁷¹

Instead, the synthesis of didehydroxcurcurne 97 was achieved by Rodrigues and Abramovitch using C₂F₅I(OCOF₃)₂, yielding the desired cyclic diaryl ether in 87%, together with traces of ortho-cyclised derivative 98 (Scheme 23).⁷² The same team also reported the synthesis of curarines through the use of nitrenium ions (Scheme 24), generated in situ by acid-catalysed decomposition of the azide precursor 99. 1,4-Type intramolecular addition of the peri-hydroxyl group, followed by tautomerisation of the imine intermediate, yielded amino-didehydroxcurcurne 102 (81%) as the major product.⁷² Notably, the intramolecular addition reaction occurs at the least sterically hindered site, namely in para-position with respect to the amino functionality.

5 Conclusion

In conclusion, in this review we have described the current synthetic approaches to prepare cyclic diaryl ethers through C–H bond cleavage/C–O bond formation. Our attention were focused on five- (furano), six- (pyrano), and seven-membered rings. In the case of the formation of furano-type rings, it is apparent that the C–O bond formation mediated by Pd and Cu salts is generally triggered by the activation of the C–H bond. High yields are usually obtained with metal-catalysed protocols if compared to classical oxidative or light-driven approaches. As far as the pyrano rings are concerned, no clear mechanisms have been postulated so far, and the reaction protocol greatly varies depending on the type of the six-membered diaryl ether, namely, dibenzoxanthene (DBX), peri-xanthenoxanthene (PXX), xanthenes, and phenoxazine (POZ). At last, seven-membered diaryl ethers are rare, and only methods to prepare curarines have been discussed.

Funding Information

D. B. thanks the EU through the MC-RISE scheme (INFUSION), and the School of Chemistry @Cardiff University for the financial support.

Acknowledgment

A. R. thanks the FRS-FNRS for his FRIA fellowship. D.B. thanks all present and past co-workers Dr. D. Stassen, Dr. A. Berezin, Dr. A. Sciutto, Dr. D. Biloborodov, Dr. L. Dordevich, Dr. D. Milano, Mr. C. Valentini, and Mr. A. Rossignon for their dedication and achievements in the field of C–O bond formation.

References