Synthesis 2019; 51(15): 2915-2922
DOI: 10.1055/s-0037-1611762
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of peri-Diarylated Naphthalimides via Double Decarboxylative Cross-Coupling Reaction

Kritchasorn Kantarod
,
Phiphob Naweephattana
,
Vichai Reutrakul
,
Manat Pohmakotr
,
Darunee Soorukram
,
,
Panida Surawatanawong
,
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand   Email: pawaret.leo@mahidol.ac.th
› Author Affiliations
This work was supported by the Thailand Research Fund (MRG6080128), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative, CNRS-PICS Program (PICS6663), and The Franco-Thai Cooperation Program in Higher Education and Research (PHC-Siam 2017) and the Faculty of Science, Mahidol University. The Science Achievement Scholarship of Thailand (SAST) is also gratefully acknowledged for financial support through student scholarships to K.K. and P.N.
Further Information

Publication History

Received: 07 January 2019

Accepted after revision: 14 February 2019

Publication Date:
03 April 2019 (online)


Abstract

A facile method for the synthesis of peri-diarylated naphthalimides was developed by using a palladium-catalyzed double decarboxylative cross-coupling reaction. The present work offers a convenient approach for tuning the optical properties of naphthalimide derivatives.

Supporting Information

 
  • References

    • 1a Naphthalenediimide and its Congeners: From Molecules to Materials. Pantoş GD. Royal Society of Chemistry; Cambridge: 2017
    • 1b Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Chem. Rev. 2016; 116: 11685
    • 1c Gopikrishna P, Meher N, Iyer PK. ACS Appl. Mater. Interfaces 2018; 10: 12081
    • 2a Fabian J, Nakazumi H, Matsuoka M. Chem. Rev. 1992; 92: 1197
    • 2b Greiner R, Schluecker T, Zgela D, Langhals H. J. Mater. Chem. C 2016; 4: 11244
    • 3a Zagranyarski Y, Chen L, Zhao Y, Wonneberger H, Li C, Müllen K. Org. Lett. 2012; 14: 5444
    • 3b Sahoo D, Sharma V, Roy R, Varghese N, Mohanta K, Koner AL. Chem. Commun. 2019; 55: 103
  • 4 Turrisi R, Sanguineti A, Sassi M, Savoie B, Takai A, Patriarca GE, Salamone MM, Ruffo R, Vaccaro G, Meinardi F, Marks TJ, Facchetti A, Beverina L. J. Mater. Chem. A 2015; 3: 8045
    • 5a Huang X, Fang Y, Li X, Xie Y, Zhu W. Dyes Pigm. 2011; 90: 297
    • 5b Shoyama K, Schmidt D, Mahl M, Wurthner F. Org. Lett. 2017; 19: 5328
    • 6a Judge DK, Haycock P, Richardson RD, Fuchter MJ. Synlett 2013; 24: 2365
    • 6b Lima CF. R. A. C, Rocha MA. A, Gomes LR, Low JN, Silva AM. S, Santos LM. N. B. F. Chem. Eur. J. 2012; 18: 8934
  • 7 Prabhakaran P, Puranik VG, Chandran JN, Rajamohanan PR, Hofmann H.-J, Sanjayan GJ. Chem. Commun. 2009; 3446
  • 8 Hirose T, Tsunoi Y, Fujimori Y, Matsuda K. Chem. Eur. J. 2015; 21: 1637
  • 10 Feng J, Chen X, Han Q, Wang H, Lu P, Wang Y. J. Lumin. 2011; 131: 2775
    • 11a Xu Z, Xiao Y, Qian X, Cui J, Cui D. Org. Lett. 2005; 7: 889
    • 11b Lu C, Xu Z, Cui J, Zhang R, Qian X. J. Org. Chem. 2007; 72: 3554
    • 11c Ge H, Li X, Wu D, Huang J, Liu SH, Yin J. Mol. Cryst. Liq. Cryst. 2013; 582: 109
    • 11d Huang J, Wu D, Ge H.-J, Liu S.-H, Yin J. Chin. Chem. Lett. 2014; 25: 1399
  • 12 Zagranyarski Y, Chen L, Jänsch D, Gessner T, Li C, Müllen K. Org. Lett. 2014; 16: 2814
    • 13a Tang J, Biafora A, Gooßen LJ. Angew. Chem. Int. Ed. 2015; 54: 13130
    • 13b Rodríguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
  • 14 Suraru S.-L, Würthner F. Synthesis 2009; 1841
  • 15 Armarego WL. F, Chai CL. L. Purification of Organic Chemicals . In Purification of Laboratory Chemicals, 6th ed. Armarego WL. F, Chai CL. L. Butterworth-Heinemann; Oxford: 2009. Chap. 4, 88
  • 16 Ulrich S, Petitjean A, Lehn JM. Eur. J. Inorg. Chem. 2010; 1913
  • 17 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision C.01 . Gaussian Inc; Wallingford (CT, USA): 2010
    • 18a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 18b Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 18c Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
    • 19a Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
    • 19b Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J. J. Chem. Phys. 1988; 89: 2193
    • 19c Petersson GA, Al-Laham MA. J. Chem. Phys. 1991; 94: 6081
  • 20 Yanai T, Tew DP, Handy NC. Chem. Phys. Lett. 2004; 393: 51
    • 21a Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
    • 21b Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem. 2003; 24: 669
    • 22a Hall MB, Fenske RF. Inorg. Chem. 1972; 11: 768
    • 22b Bursten BE, Jensen JR, Fenske RF. J. Chem. Phys. 1978; 68: 3320