Alkyne–Azide Cycloaddition on Water-Soluble Copper NP–Cobaltocene Catalyst

Significance: Water-soluble copper nanoparticles stabilized by a cobalticinium network (CuNPs–CoCp₂) were prepared through the reduction of CuSO₄·5H₂O by cobaltocene (eq. 1). CuNPs–CoCp₂ catalyzed the alkyne–azide cycloaddition of terminal alkynes with organic azides in H₂O at 35 °C to give the corresponding 1,2,3-triazoles in ≤99% yield (eq. 2; 30 examples).

Comment: The catalyst was characterized by means of UV-Vis, TEM, and XPS analyses. In the alkyne–azide cycloaddition of phenylacetylene with benzyl azide, the water-soluble catalyst was recovered by decantation and recycled four times with a slight loss of its activity (first run: 99%; fourth run: 86%).

SYNFACTS Contributors: Yasuhiro Uozumi, Aya Tazawa

Synfacts 2018, 14(12), 1309 Published online: 19.11.2018
DOI: 10.1055/s-0037-1611098; Reg-No.: Y13818SF