Synlett 2020; 31(08): 788-792
DOI: 10.1055/s-0037-1610753
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Linear α,β-Unsaturated Amides from Isocyanates and Alkenylaluminum Reagents

Bo Chen
a   Department of Chemistry, Zhejiang Sci-Tech University,Xiasha Campus, Hangzhou 310018, P. R. of China
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, ­Albert-Einstein-Straße 29a 18059 Rostock, Germany   Email: Xiao-feng.wu@catalysis.de
,
Xiao-Feng Wu
a   Department of Chemistry, Zhejiang Sci-Tech University,Xiasha Campus, Hangzhou 310018, P. R. of China
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, ­Albert-Einstein-Straße 29a 18059 Rostock, Germany   Email: Xiao-feng.wu@catalysis.de
› Author Affiliations
C.B. thanks the China Scholarship Council (CSC) for financial support.
Further Information

Publication History

Received: 07 January 2020

Accepted after revision: 02 February 2020

Publication Date:
19 February 2020 (online)


Abstract

A new approach has been developed for the synthesis of linear α,β-unsaturated amides by the direct coupling of isocyanates with alkenylaluminum reagents. At room temperature, the desired α,β-unsaturated amides were isolated in good to excellent yields with good functional-group tolerance in the absence of any catalyst or additive.

Supporting Information

 
  • References and Notes

    • 1a Ueda S, Okada T, Nagasawa H. Chem. Commun. 2010; 46: 2462
    • 1b Mu X, Wu T, Wang H.-y, Guo Y.-l, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 1c Fan J.-H, Wei W.-T, Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
    • 1d Zhang H, Gu Z, Li Z, Pan C, Li W, Hu H, Zhu C. J. Org. Chem. 2016; 81: 2122
    • 1e Caulfield MJ, Qiao GG, Solomon DH. Chem. Rev. 2002; 102: 3067
    • 1f Buchanan MS, Carroll AR, Addepalli R, Avery VM, Hooper JN. A, Quinn RJ. J. Nat. Prod. 2007; 70: 1827
    • 1g Fu P, Johnson M, Chen H, Posner BA, MacMillan JB. J. Nat. Prod. 2014; 77: 1245
    • 1h Putt KS, Nesterenko V, Dothager RS, Hergenrother PJ. ChemBioChem 2006; 7: 1916
    • 1i Viswanadhan VN, Sun Y, Norman MH. J. Med. Chem. 2007; 50: 5608
    • 2a Collins FW. J. Agric. Food Chem. 1989; 37: 60
    • 2b Bryngelsson S, Dimberg LH, Kamal-Eldin A. J. Agric. Food Chem. 2002; 50: 1890
    • 2c Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson RE, Dimberg LH. J. Agric. Food Chem. 2003; 51: 594
    • 2d Chen CY. O, Milbury PE, Collins FW, Blumberg JB. J. Nutr. 2007; 137: 1375
    • 2e Meydani M. Nutr. Rev. 2009; 67: 731
    • 2f Koenig RT, Dickman JR, Wise ML, Ji LL. J. Agric. Food Chem. 2011; 59: 6438
    • 2g Alrahmany R, Tsopmo A. Food Chem. 2012; 132: 413
    • 2h Alrahmany R, Avis TT, Tsopmo A. Food Res. Int. 2013; 52: 568
    • 3a Hung C.-C, Tsai W.-J, Kuo L.-MY, Kuo Y.-H. Bioorg. Med. Chem. 2005; 13: 1791
    • 3b Fu J, Cheng K, Zhang Z.-m, Fang R.-q, Zhu H.-l. Eur. J. Med. Chem. 2010; 45: 2638
    • 3c Shi Z.-H, Li N.-G, Shi Q.-P, Tang H, Tang Y.-P, Li W, Yin L, Yang J.-P, Duan J.-A. Bioorg. Med. Chem. Lett. 2013; 23: 1206
    • 3d Dai L, Zang C, Tian S, Liu W, Tan S, Cai Z, Ni T, An M, Li R, Gao Y, Zhang D, Jiang Y. Bioorg. Med. Chem. Lett. 2015; 25: 34
    • 4a Patel K, Piagentini M, Rascher A, Tian Z.-Q, Buchanan GO, Regentin R, Hu ZH, Hutchinson CR, McDaniel R. Chem. Biol. 2004; 11: 1625
    • 4b Machajewski T, Lin X, Jefferson AB, Gao Z. Annu. Rep. Med. Chem. 2005; 40: 263
    • 4c Chaudhury S, Welch TR, Blagg BS. J. ChemMedChem 2006; 1: 1331
    • 4d Taldone T, Sun W, Chiosis G. Bioorg. Med. Chem. 2009; 17: 2225
    • 5a Concellón JM, Pérez-Andrés JA, Rodríguez-Solla H. Angew. Chem. Int. Ed. 2000; 39: 2773
    • 5b Feuillet FJ. P, Cheeseman M, Mahon MF, Bull SD. Org. Biomol. Chem. 2005; 3: 2976
    • 5c Concellón JM, Bardales E. J. Org. Chem. 2003; 68: 9492
    • 5d Song X.-R, Song B, Qiu Y.-F, Han Y.-P, Qiu Z.-H, Hao X.-H, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2014; 79: 7616
    • 5e Choi T.-L, Chatterjee AK, Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 1277
    • 5f Kojima S, Inai H, Hidaka T, Ohkata K. Chem. Commun. 2000; 1795
    • 5g Liu Z, Huang F, Wu P, Wang Q, Yu Z. J. Org. Chem. 2018; 83: 5731
    • 5h Nakao Y, Idei H, Kanyiva KS, Hiyama T. J. Am. Chem. Soc. 2009; 131: 5070
    • 6a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 6b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 6c Pattabiraman VJ, Bode JW. Nature 2011; 480: 471
    • 6d Allen CL, Williams JM. Chem. Soc. Rev. 2011; 40: 3405
    • 6e Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 6f de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 6g Porras AO, Gamba-Sánchez D. J. Org. Chem. 2016; 81: 11548
    • 7a Hiyama T, Wakasa N, Useda T, Kusumoto T. Bull. Chem. Soc. Jpn. 1990; 63: 640
    • 7b Torii S, Okumoto H, Sadakane M, Xu LH. Chem. Lett. 1991; 20: 1673
    • 7c Ouerfelli O, Ishida M, Shinozaki H, Nakanishi K, Ohfune Y. Synlett 1993; 409
    • 7d El Ali B, El-Ghanam AM, Fettouhi M, Tijani J. Tetrahedron Lett. 2000; 41: 5761
    • 7e El Ali B, Tijani J, El-Gahanam AM. Appl. Organomet. Chem. 2002; 16: 369
    • 7f El Ali B, Tijani J, El-Ghanam AM. J. Mol. Catal. A: Chem. 2002; 187: 17
    • 7g El Ali B, Tijani J. Appl. Organomet. Chem. 2003; 17: 921
    • 7h Matteoli U, Scrivanti A, Beghetto V. J. Mol. Catal. A: Chem. 2004; 213: 183
    • 7i Li Y, Alper H, Yu Z. Org. Lett. 2006; 8: 5199
    • 7j Lu S.-M, Alper H. J. Am. Chem. Soc. 2008; 130: 6451
    • 7k Suleiman R, Tijani J, El Ali B. Appl. Organomet. Chem. 2010; 24: 38
    • 7l Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
    • 7m Driller KM, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2011; 50: 537
    • 7n Peng J.-B, Geng H.-Q, Li D, Qi X.-X, Ying J, Wu X.-F. Org. Lett. 2018; 20: 4988
    • 7o Chen B, Wu X.-F. J. Catal. 2020; 383: 160
    • 7p Sha F, Alper H. ACS Catal. 2017; 7: 2220
  • 8 Serrano E, Martin R. Eur. J. Org. Chem. 2018; 3051
    • 9a Schleicher KD, Jamison TF. Org. Lett. 2007; 9: 875
    • 9b Hernandez E, Hoberg H. J. Organomet. Chem. 1986; 315: 245
    • 9c Hoberg H, Guhl D. Angew. Chem. 1989; 101: 1091
  • 10 Wang X, Nakajima M, Serrano E, Martin R. J. Am. Chem. Soc. 2016; 138: 15531
  • 11 Amides 3; General ProcedureUnder argon, a solution of the appropriate alkenylaluminum (0.6 mmol) in hexane (0.6 mL) was added dropwise to a fresh solution of the appropriate isocyanate (0.5 mmol) in THF (1 mL) at 0 °C. The mixture was then warmed slowly to r.t. (25 °C) and stirred until the reaction was complete (16 h). After removal of solvent under reduced pressure, the pure product was obtained by column chromatography [silica gel, heptane–ethyl acetate (5:1)]. (2E)-N-Phenylnon-2-enamide (3aa)Colorless oil; yield: 83 mg (72%). 1H NMR (500 MHz, CDCl3): δ = 7.64 (s, 1 H), 7.51 (d, J = 8.1 Hz, 2 H), 7.22 (t, J = 7.8 Hz, 2 H), 7.02 (t, J = 7.4 Hz, 1 H), 6.90 (dt, J = 15.1, 7.0 Hz, 1 H), 5.89 (dt, J = 15.3, 1.6 Hz, 1 H), 2.11 (qd, J = 7.1, 1.5 Hz, 2 H), 1.41–1.32 (m, 2 H), 1.21 (dddt, J = 14.6, 9.2, 6.6, 3.5 Hz, 6 H), 0.82 (t, J = 6.9 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 164.4, 146.6, 138.2, 129.1, 129.0, 124.2, 120.0, 32.2, 31.6, 28.9, 28.2, 22.6, 14.1. HRMS (ESI): m/z [M + H]+ calcd for C15H22NO: 232.1701; found: 232.1702.