Synthesis 2019; 51(16): 3127-3141
DOI: 10.1055/s-0037-1610707
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Bisflavanol-Type Natural Products and Their Analogues­ via Self-Coupling of C8-Methylol Catechin Derivatives

Deng-Ming Huang
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Hui-Jing Li*
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Yan Zhao
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
b   Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21672046 and 21372054), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.201701), and the Foundation from Huancui District of Wehai City.
Further Information

Publication History

Received: 13 January 2019

Accepted after revision: 25 March 2019

Publication Date:
24 April 2019 (online)


Abstract

A highly efficient and regioselective self-coupling of C8-methylol catechin derivatives is developed for the synthesis of dimeric flavanol analogues under metal-free and mild conditions. Its applicability is showcased by the efficient synthesis of bisflavanol-type natural products bis-8,8′-catechinylmethane, bis-8,8′-epicatechinylmethane, talienbisflavan A, and oolonghomobisflavan A. The novel self-coupling mechanism sheds new light on the classical Friedel–Crafts alkylation mechanism in acid-catalyzed catechin–formaldehyde condensation.

Supporting Information

 
  • References

    • 1a Ferreira D, Bekker R. Nat. Prod. Rep. 1996; 13: 411
    • 1b Ferreira D, Slade D. Nat. Prod. Rep. 2002; 19: 517
    • 2a Xu Y, Ho CT, Amin SG, Han C, Chuang FL. Cancer Res. 1992; 52: 3875
    • 2b Von Gadow A, Joubert E, Hansmann CF. Food Chem. 1997; 60: 73
    • 2c Hirano R, Sasamoto W, Matsumoto A, Itakura H, Igarashi O, Kondo K. J. Nutr. Sci. Vitaminol. 2001; 47: 357
    • 5a Kinjo J, Nagao T, Tanaka T, Nonaka G, Okawa M, Nohara T, Okabe H. Biol. Pharm. Bull. 2002; 25: 1238
    • 5b Landis-Piwowar KR, Huo C, Chen DI, Milacic V, Shi G, Chan TH, Dou QP. Cancer Res. 2007; 67: 4303
    • 5c Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP. Adv. Clin. Chem. 2011; 53: 155
  • 6 Hatano T, Miyatake H, Natsume M, Osakabe N, Takizawa T, Ito H, Yoshida T. Phytochemistry 2002; 59: 749
  • 7 Ma Q, Xie H, Li S, Zhang R, Zhang M, Wei X. J. Agric. Food Chem. 2014; 62: 1073
  • 8 Zhu LF, Xu M, Zhu HT, Wang D, Yang SX, Yang CR, Zhang YJ. J. Agric. Food Chem. 2012; 60: 12170
  • 9 Hashimoto F, Nonaka G, Nishioka I. Chem. Pharm. Bull. 1989; 37: 3255
    • 10a Nakai M, Fuki U, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F. J. Agric. Food Chem. 2005; 53: 4593
    • 10b Gao DF, Zhang YJ, Yang CR, Chen KK, Jiang HJ. J. Agric. Food Chem. 2008; 56: 7517
    • 10c Liu Q, Zhang YJ, Yang CR, Xu M. J. Agric. Food Chem. 2009; 57: 586
    • 10d Gao DF, Xu M, Yang CR, Xu M, Zhang YJ. J. Agric. Food Chem. 2010; 58: 8820
  • 11 Boyer FD, Ducrot PH. Tetrahedron Lett. 2005; 46: 5177
  • 12 Pariollaud M, Cockrell J, Selenski C. Tetrahedron Lett. 2014; 55: 2484
    • 13a Hillis WE, Gerda U. J. Appl. Chem. 1959; 9: 474
    • 13b Kiatgrajai P, Wellons JD, Gollob L, White JD. J. Org. Chem. 1982; 47: 2913
    • 13c Fechtal M, Riedl B, Calvé L. Holzforschung 1993; 47: 419
    • 14a Takagaki A, Fukai K, Nanjo F, Hara Y. J. Wood Sci. 2000; 46: 334
    • 14b Takagaki A, Fukai K, Nanjo F, Hara Y, Watanabe M, Sakuragawa S. Mokuzai Gakkaishi 2000; 46: 231
    • 14c Toshiyuki T, Tomomi M, Hiroshi K, Fumiaki N. J. Wood Sci. 2008; 54: 329
  • 15 Huang D.-M, Li H.-J, Wang J.-H, Wu Y.-C. Org. Biomol. Chem. 2018; 16: 585
    • 16a Wan SB, Dou QP, Chan TH. Tetrahedron 2006; 62: 5897
    • 16b Sánchez-del-Campo L, Otón F, Tárraga A, Cabezas-Herrera J, Chazarra S, Rodríguez-López JN. J. Med. Chem. 2008; 51: 2018
    • 16c Imai K, Nakanishi I, Ohno A, Kurihara M, Miyata N, Matsumoto KI, Nakamura A, Fukuhara K. Bioorg. Med. Chem. Lett. 2014; 24: 2582
    • 16d Sarmiento V, Ramirez-Sanchez I, Moreno-Ulloa A, Romero-Perez D, Chávez D, Ortiz M, Najera N, Correa-Basurto J, Villarreal F, Ceballos G. Bioorg. Med. Chem. Lett. 2018; 28: 658
  • 17 Srivastava V, Negi AS, Kumar JK, Gupta MM. Steroids 2006; 71: 632
    • 18a Wan SB, Chen D, Dou QP, Chan TH. Bioorg. Med. Chem. 2004; 12: 3521
    • 18b Osanai K, Huo C, Landis-Piwowar KR, Dou QP, Chan TH. Tetrahedron 2007; 63: 7565
    • 18c Qin XL, Li XM, Yuan J, Chen D, Jiang T, Dou QP, Chan TH, Wan SB. Synth. Commun. 2012; 42: 3524
    • 19a Lai YY, Lin NT, Liu YH, Wang Y, Luh TY. Tetrahedron 2007; 63: 6051
    • 19b Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. Angew. Chem. Int. Ed. 2009; 48: 9721
    • 19c Sawama Y, Masuda M, Asai S, Goto R, Nagata S, Nishimura S, Monguchi Y, Sajiki H. Org. Lett. 2015; 17: 434
    • 19d Okada Y, Wakamatsu H, Sugai M, Kauppinen EI, Chiba K. Org. Lett. 2015; 17: 4264
    • 20a Rathore R, Kochi JK. J. Org. Chem. 1995; 60: 7479
    • 20b Branchi B, Bietti M, Erocolani G, Izquierdo MA, Miranda MA, Stella L. J. Org. Chem. 2004; 69: 8874
    • 21a Wilsdorf M, Leichnitz D, Reissig HU. Org. Lett. 2013; 15: 2494
    • 21b Wang K, Tan LL, Chen DX, Song N, Xi G, Zhang SX. A, Li CJ, Yang YW. Org. Biomol. Chem. 2012; 10: 9405