Synlett 2018; 29(19): 2456-2460
DOI: 10.1055/s-0037-1610552
synpacts
© Georg Thieme Verlag Stuttgart · New York

Facile Access to Cyclopentadienes via Catalytic Intramolecular Palladium-Ene Reaction of 2,4-Pentadienyl Acetates

Saitanya K. Bharadwaj
a   Department of Chemistry, Pragjyotish College, Guwahati, Assam 781009, India
,
Siddheshwar K. Bankar
b   Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research(IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
,
b   Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research(IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
› Author Affiliations
IISER Mohali is acknowledged for funding and for providing the infrastructure. S.K.B (first author) thanks IASc-INSA-NASI FAST-SF 2018. S.K.B. (second author) thanks IISER Mohali for a fellowship.
Further Information

Publication History

Received: 15 June 2018

Accepted: 10 July 2018

Publication Date:
02 August 2018 (online)


Abstract

We have recently disclosed a palladium-catalyzed Trost–­Oppolzer type Alder-ene reaction of 2,4-pentadienyl acetates for the synthesis of highly substituted cyclopentadienes and cyclopentene-fused aromatics. The overall transformation also represents an acid-free iso-Nazarov type cyclization. Herein, we provide the hypothesis and ­rationale behind this work, while highlighting the seminal contributions of Trost, Oppolzer and others towards the development of the palladium-ene reaction.

 
  • References

    • 1a Tsuji J. Takahashi H. Morikawa M. Tetrahedron Lett. 1965; 6: 4387
    • 1b Trost BM. Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
    • 1c Trost BM. Weber L. Strege PE. Fullerton TJ. Diestche TJ. J. Am. Chem. Soc. 1978; 100: 3416
    • 1d Trost BM. Angew. Chem. Int. Ed. Engl. 1989; 28: 1173
    • 2a Trost BM. Acc. Chem. Res. 1996; 29: 355
    • 2b Jellerichs G. Kong J.-R. Krische MJ. J. Am. Chem. Soc. 2003; 125: 7758
    • 2c Kazmaier U. Curr. Org. Chem. 2003; 7: 317
    • 2d Miyabe H. Takemoto Y. Synlett 2005; 1641
    • 2e You S.-L. Dai L.-X. Angew. Chem. Int. Ed. 2006; 45: 5246
    • 2f Braun M. Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
    • 2g Ibrahem I. Còrdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
    • 2h Lu Z. Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 2i Jensen T. Fristrup P. Chem. Eur. J. 2009; 15: 9632
    • 2j Weaver JD. Recio III A. Grenning AJ. Tunge JA. Chem. Rev. 2011; 111: 1846
    • 2k Kammerer C. Prestat G. Madec D. Poli G. Acc. Chem. Res. 2014; 47: 3439
    • 2l Liu Y. Han S.-J. Liu W.-B. Stoltz BM. Acc. Chem. Res. 2015; 48: 740
    • 2m Trost BM. Tetrahedron 2015; 71: 5708
    • 3a Trost BM. Hung M.-H. J. Am. Chem. Soc. 1984; 106: 6837
    • 3b Andersson PG. Backvall J.-E. J. Org. Chem. 1991; 56: 5349
    • 3c Nilsson YI. M. Andersson PG. Backvall J.-E. J. Am. Chem. Soc. 1993; 115: 6609
    • 3d Kang S.-K. Park D.-C. Jeon J.-H. Rho H.-S. Yu C.-M. Tetrahedron Lett. 1994; 35: 2357
    • 3e Trost BM. Bunt RC. J. Am. Chem. Soc. 1998; 120: 70
    • 3f Shimizu I. Matsumoto Y. Nishikawa M. Kawahara T. Satake A. Yamamoto A. Chem. Lett. 1998; 27: 983
    • 3g Schobert R. Barnickel B. Synthesis 2009; 2778
  • 4 Brummond KM. Loyer-Drew JA. C–C Bond Formation (Part 1) by Addition Reactions: Alder-Ene Reaction . In Comprehensive Organometallic Chemistry III, Vol. 10. Crabtree RH. Mingos MP. Ojima I. Elsevier; Oxford: 2007. Chap. 10.12
    • 5a Oppolzer W. Pitteloud R. Strauss HF. J. Am. Chem. Soc. 1982; 104: 6476
    • 5b Trost BM. Lautens M. J. Am. Chem. Soc. 1985; 107: 1781
    • 5c Oppolzer W. Gaudin J.-M. Birkinshaw TN. Tetrahedron Lett. 1988; 29: 4705
    • 5d Oppolzer W. Keller TH. Bedoya-Zurita M. Stone C. Tetrahedron Lett. 1989; 30: 5883
    • 5e Takacs JM. Newsome PW. Kuehn C. Tetrahedron 1990; 46: 5507
    • 5f Oppolzer W. Pure Appl. Chem. 1990; 62: 1941
    • 5g Oppolzer W. Furstner A. Helv. Chim. Acta 1993; 76: 2329
    • 5h Meyer C. Marek I. Courtemanche G. Normant J.-F. J. Org. Chem. 1995; 60: 863
    • 5i Llerena D. Aubert C. Malacria M. Tetrahedron Lett. 1996; 37: 7027
    • 5j Trost BM. Toste FD. Tetrahedron Lett. 1999; 40: 7739
    • 5k Trost BM. Machacek RM. Schnaderbeck MJ. Org. Lett. 2000; 2: 1761
    • 5l Kel’in AV. Sromek AW. Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074
    • 5m Brummond KM. Chen H. Sill P. You L. J. Am. Chem. Soc. 2002; 124: 15186
    • 5n Trost BM. Machacek RM. Ball ZT. Org. Lett. 2003; 5: 1895
    • 5o Hilt G. Treutwein J. Angew. Chem. Int. Ed. 2007; 46: 8500
    • 5p Schwier T. Sromek AW. Yap DM. L. Chemyak D. Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
    • 5q Fürstner A. Majima K. Martin R. Krause H. Kattnig F. Goddard R. Lehmann CW. J. Am. Chem. Soc. 2008; 130: 1992
    • 5r Fukamizu K. Miyake Y. Nishibayashi Y. J. Am. Chem. Soc. 2008; 130: 10498
    • 6a Trost BM. Krische M. J. J. Am. Chem. Soc. 1996; 118: 233
    • 6b Pearson AJ. Wang X. J. Am. Chem. Soc. 2003; 125: 13326
    • 6c Roethle PA. Trauner D. Org. Lett. 2006; 8: 345
    • 6d Watson ID. G. Toste FD. Chem. Sci. 2012; 3: 2899
    • 6e Marinetti A. Jullien H. Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
    • 6f Crisp AL. Li J. Lan P. Nugent J. Matousova E. Banwell MG. Aust. J. Chem. 2015; 68: 1183
  • 7 Bankar SK. Singh B. Tung P. Ramasastry SS. V. Angew. Chem. Int. Ed. 2018; 57: 1678
    • 8a Halterman RL. Chem. Rev. 1992; 92: 965
    • 8b Kotora M. Top. Organomet. Chem. 2004; 8: 57
    • 8c Enders M. Baker RW. Curr. Org. Chem. 2006; 10: 937
    • 8d Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 8e Coombs JR. Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
    • 9a Bee C. Leclerc E. Tius MA. Org. Lett. 2003; 5: 4927
    • 9b Basak AK. Shimada N. Bow WF. Vicic DA. Tius MA. J. Am. Chem. Soc. 2010; 132: 8266
    • 9c Cai Z.-X. Harmata M. Org. Lett. 2010; 12: 5668
    • 9d Subramanium SS. Handa S. Miranda AJ. Slaughter LM. ACS Catal. 2011; 1: 1371
    • 9e Kitamura K. Shimada N. Stewart C. Atesin AC. Atesin TA. Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6288
    • 9f Riveira MJ. Marsili LA. Mischne MP. Org. Biomol. Chem. 2017; 15: 9255
    • 10a Funami H. Kusama H. Iwasawa N. Angew. Chem. Int. Ed. 2007; 46: 909
    • 10b Lee JH. Toste FD. Angew. Chem. Int. Ed. 2007; 46: 912
  • 11 Sarnpitak P. Trongchit K. Kostenko Y. Sathalalai S. Gleeson MP. Ruchirawat S. Ploypradith P. J. Org. Chem. 2013; 78: 8281
    • 12a Majetich G. Shimkus JM. J. Nat. Prod. 2010; 73: 284
    • 12b Gabriele B. Mancuso R. Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 12c Chanda T. Singh MS. Org. Biomol. Chem. 2016; 14: 8895
    • 13a Baraznenok IL. Nenajdenko VG. Balenkova ES. Synthesis 1997; 465
    • 13b Somei M. Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 13c Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 13d Higuchi K. Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 13e Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 13f Ie Y. Nishida K. Karakawa M. Tada H. Aso Y. J. Org. Chem. 2011; 76: 6604
    • 14a Snyder SA. Zografos AL. Lin Y. Angew. Chem. Int. Ed. 2007; 46: 8186
    • 14b Jeffrey JL. Sarpong R. Org. Lett. 2009; 11: 5450
    • 14c Snyder SA. Breazzano SP. Ross AG. Lin Y. Zografos AL. J. Am. Chem. Soc. 2009; 131: 1753
    • 14d Kim H. Nagaki A. Yoshida J.-I. Nat. Chem. 2011; 2: 264
    • 14e Lee BH. Choi YL. Shin S. Heo J.-N. J. Org. Chem. 2011; 76: 6611
    • 14f Yang Y. Philips D. Pan S. J. Org. Chem. 2011; 76: 1902
    • 14g Kerr DJ. Miletic M. Manchala N. White JM. Flynn BL. Org. Lett. 2013; 15: 4118
    • 14h Du B. Jiang X. Sun P. J. Org. Chem. 2013; 78: 2786