A New Synthesis of Gefitinib

Taber S. Maskrey
Tyler Kristufek
Matthew G. LaPorte
Prasanth R. Nyalapatla
Peter Wipf*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
pwipf@pitt.edu

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Received: 08.09.2018
Accepted: 15.10.2018
Published online: 14.11.2018

License terms:

Abstract
A four-step synthesis of the FDA-approved anticancer agent gefitinib was developed starting from 2,4-dichloro-6,7-dimethoxy-quinazoline. Reaction temperatures were highly practical (0–55 °C), and chromatographic purifications were avoided. The ionic liquid trime-thylammonium heptachlorodialuminate was used to monodemethylate the dimethoxyquinazoline core. In the final step, a selective dehalogenation was employed to provide gefitinib in 14% overall yield on a gram scale.

Key words
ionic liquids, demethylation, nucleophilic aromatic substitution, dehalogenation, gefitinib, medicinal chemistry

Originally developed by AstraZeneca, gefitinib (Iressa) is a small-molecule tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR). The drug was approved in 2015 by the US Food and Drug Administration (FDA) as a first-line treatment for metastatic non-small-cell lung cancer (NSCLC) with EGFR mutations. Worldwide, lung cancer is the most prevalent fatal cancer for both men and women. In NSCLC, mutation of the EGFR tyrosine kinase domain destabilizes the kinase conformation and affects downstream signaling pathways. These disruptions stimulate cancer cell proliferation and inhibit apoptosis. Gefitinib reversibly binds to the ATP site of the EGFR kinase domain to inhibit autophosphorylation and signal transduction.

Several syntheses of gefitinib have been described in the literature. AstraZeneca’s original synthesis began with the demethylation of 6,7-dimethoxyquinazoline-4-one with L-methionine and methanesulfonic acid, followed by acetylation, halogenation, aniline nucleophilic aromatic substitution (SNAr), deacetylation, and O-alkylation (Scheme 1). This six-step synthesis (10% overall yield) required chromatographic purifications and used hazardous reagents, such as thionyl chloride, which reacts violently with water to produce toxic fumes of sulfur dioxide and also contaminates the air very quickly upon evaporation at 20 °C.

In 2007, Reddy and co-workers reported a synthesis of gefitinib from isovanillin (Scheme 2). The nitro group in the isovanillin-derived intermediate was reduced with sodium dithionite, followed by treatment with N,N-dimethylformamide dimethylacetal (DMF-DMA; 1,1-dimethoxy-
N,N-dimethylmethanamine) and amination with 3-chloro-4-fluoroaniline to yield the active pharmaceutical ingredient (API). No chromatography was required, but high reaction temperatures were needed, and DMF was used in large quantities in the seven-step synthesis.

More recently, Suh and co-workers reported a variant of the AstraZeneca synthesis that used a transient-protective-group strategy (Scheme 3). An acetylated quinazoline core was subjected to a chlorination with \(\text{POCl}_3 \), substitution with 3-chloro-4-fluoroaniline, and deprotection with \(\text{LiOH} \) to set the stage for alkylation with 4-(3-chloropropyl)morpholine, using TMSI to protect the aniline nitrogen transiently. Although high yielding, this synthetic route required hazardous TMSI and a more-elaborate starting material. It also used phosphoryl chloride, which reacts violently with water to produce toxic gases, and is highly corrosive.

We envisioned a new route to gefitinib with fewer than five steps from inexpensive starting materials that would avoid hazardous reagents and chromatographic separations, and would keep reaction temperatures in the 0–60 °C range. Such a process would be commercially relevant and potentially attractive for pharmaceutical manufacturing. To increase the electrophilic reactivity of the pyrimidine moiety in the \(\text{SN}_2\text{Ar} \) reaction, we chose commercially available 2,4-dichloro-6,7-dimethoxyquinazoline (1) as a starting material. To the best of our knowledge, a synthesis of gefitinib or related analogues that utilizes a 2,4-dichloroquinazoline as a starting material or advanced intermediate is unprecedented. We reasoned that the \(\text{SN}_2\text{Ar} \) substitution of the chlorine in the 4-position of the quinazoline would occur preferentially, and that the 2-position might be readily dechlorinated at a late stage. We did not employ a Buchwald–Hartwig amination of the quinazoline because of concerns regarding the harsh conditions often required and because of the risk of contaminating the API with Pd. Furthermore, several groups have recently demonstrated the feasibility of nucleophilic aromatic substitutions on similar quinazoline substrates under simple acidic conditions.

Accordingly, the dichloroquinazoline 1 was treated with 3-chloro-4-fluoroaniline in 20.4 equivalents of acetic acid at 55 °C for two hours to yield the coupling product 2 after extraction with EtOAc and filtration (Scheme 4). Under these conditions, we were able to isolate the desired 4-aminated product 2 exclusively in 65% yield on a multigram scale. Not unexpectedly, however, the ensuing selective demethylation of 2 proved challenging (Table 1). A variety of conditions were tested, including L-methionine in methanesulfonic acid (Table 1, entry 1). However, these conditions mainly afforded decomposition products at the high temperatures that proved necessary for significant conversion. Interestingly, \(\text{BBr}_3 \) provided the bisdemethylated product exclusively (entry 2). When we experimented with
various additives to BBr₃ to control the rate of demethylation, we either observed no reaction (NR) or a complex mixture of products (entries 3 and 4). Another Lewis acid, aluminum iodide (AlI₃), also showed no reaction at low temperatures (entry 5). Aluminum chloride (AlCl₃) showed a robust rate of conversion but, even in the presence of sodium iodide (NaI), at best provided a 1:1 ratio of demethylated isomers that were difficult to separate (entries 6–7). With ethanethiol as an additive, a favorable 1:0.4 ratio was obtained, but in low yield (entry 8). Reaction times longer than two days were required for high conversions.

In an attempt to accelerate the reaction without recourse to excessive heating that could potentially lead to deamination byproducts and quinazoline ring opening, we explored the cleavage of methyl ethers through the use of ionic liquid (IL) reagents, including trimethylammonium heptachlorodialuminate ([TMAH][Al₂Cl₇]). The IL demethylation mechanism is similar to that of AlCl₃; however, the IL contains a higher concentration of chloride ions, the nucleophilicity of which is enhanced, resulting in shorter reaction times. Furthermore, improved demethylation selectivity has been reported for bicyclic ring systems. The IL was synthesized in situ from aluminum trichloride and trimethylammonium chloride in dichloromethane, and was direct-

Table 1 Screening of Reagents and Conditions for Demethylation at the 6-Position of Intermediate 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent(s) (equiv)</th>
<th>Temp (°C)</th>
<th>Solvent</th>
<th>Product(s) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-methionine (1.2)</td>
<td>150</td>
<td>MeSOH</td>
<td>– (dec.)</td>
</tr>
<tr>
<td>2</td>
<td>BBr₃ (3.0)</td>
<td>r.t.</td>
<td>CH₂Cl₂</td>
<td>7 b</td>
</tr>
<tr>
<td>3</td>
<td>ZrCl₂ (2.0), BBr₃ (1.0)</td>
<td>50</td>
<td>CH₂Cl₂</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>TiCl₄ (2.0), BBr₃ (1.0)</td>
<td>45</td>
<td>CH₂Cl₂</td>
<td>mixture</td>
</tr>
<tr>
<td>5</td>
<td>AlI₃ (1.5), PhSH (1.5)</td>
<td>0</td>
<td>CH₂Cl₂</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>AlCl₃ (3.0)</td>
<td>r.t.</td>
<td>CH₂Cl₂</td>
<td>3, 6 c</td>
</tr>
<tr>
<td>7</td>
<td>AlCl₃ (3.0), NaI (3.0)</td>
<td>r.t.</td>
<td>CH₂Cl₂</td>
<td>3, 6</td>
</tr>
<tr>
<td>8</td>
<td>AlCl₃ (3.0), EtSH (2.0)</td>
<td>40</td>
<td>CH₂Cl₂</td>
<td>3, 6 d</td>
</tr>
<tr>
<td>9</td>
<td>[TMAH][Al₂Cl₇] (3.0)</td>
<td>50</td>
<td>CH₂Cl₂</td>
<td>3, 6 e</td>
</tr>
</tbody>
</table>

a Products and product ratios were determined by LC/MS and 19F NMR analyses.
b The bisdemethylated product 7 was formed exclusively.
c A 1:3 ratio of demethylated isomers and the starting material was detected that could not readily be enriched in the desired product through crystallization.
d A 1:0.4 ratio of phenols 3 and 6 was formed in low yield.
e A 1.3:1 ratio of phenols 3 and 6 was enriched to a 97:3 ratio in the first crystallization batch favoring the desired product 3.
ly used for the demethylation step in a one-pot protocol. With intermediate 2, we found that treatment with [TMAH][Al2Cl7] at 50 °C for two hours gave a 1.1–1.3 to 1 ratio of monodemethylated regioisomers; however, a favorable >95:5 ratio of the desired product could be obtained in 30–35% yield without chromatography by crystallization of the concentrated reaction mixture from hot methanol. Although not required for the next step, a second crystallization increased the regioisomeric purity to >99%.

The IL was freshly prepared before each use, and was not concentrated as suggested in the original publication, because we found that removal of the solvent generally resulted in a less active reagent. The one-pot protocol also simplified the experimental protocol. Significantly, the synthesis of [TMAH][Al2Cl7] IL is cost effective, and its feasibility for chemical-process applications has already been demonstrated on 7 kg scale.

Previous syntheses mainly used DMF, sodium and potassium carbonates, and high temperatures for the O-alkylation step. We found that sodium and potassium carbonates were not effective at low temperatures in DMSO. In contrast, the reaction of 3 with 4-(3-chloropropyl)morpholine in the presence of cesium carbonate in DMSO at 40 °C for 2.5 hours provided ether 4 in 80% yield after filtration and crystallization from hot methanol. The FDA classifies DMF as a more-hazardous Class 2 solvent, whereas DMSO is a less-hazardous Class 3 solvent; therefore, these conditions were in agreement with our goal of minimizing the use of toxic or controlled reagents.

The final dehalogenation step in the conversion of 4 to 5 required considerable optimization. Palladium(II) acetate in the presence of cesium carbonate in DMSO at 40 °C for 2.5 hours provided ether 4 in 80% yield after filtration and crystallization from hot methanol. The FDA classifies DMF as a more-hazardous Class 2 solvent, whereas DMSO is a less-hazardous Class 3 solvent; therefore, these conditions were in agreement with our goal of minimizing the use of toxic or controlled reagents.

The final dehalogenation step in the conversion of 4 to 5 required considerable optimization. Palladium(II) acetate in the presence of cesium carbonate in DMSO at 40 °C for 2.5 hours provided ether 4 in 80% yield after filtration and crystallization from hot methanol. The FDA classifies DMF as a more-hazardous Class 2 solvent, whereas DMSO is a less-hazardous Class 3 solvent; therefore, these conditions were in agreement with our goal of minimizing the use of toxic or controlled reagents.

The final dehalogenation step in the conversion of 4 to 5 required considerable optimization. Palladium(II) acetate in the presence of cesium carbonate in DMSO at 40 °C for 2.5 hours provided ether 4 in 80% yield after filtration and crystallization from hot methanol. The FDA classifies DMF as a more-hazardous Class 2 solvent, whereas DMSO is a less-hazardous Class 3 solvent; therefore, these conditions were in agreement with our goal of minimizing the use of toxic or controlled reagents.

The final dehalogenation step in the conversion of 4 to 5 required considerable optimization. Palladium(II) acetate in the presence of cesium carbonate in DMSO at 40 °C for 2.5 hours provided ether 4 in 80% yield after filtration and crystallization from hot methanol. The FDA classifies DMF as a more-hazardous Class 2 solvent, whereas DMSO is a less-hazardous Class 3 solvent; therefore, these conditions were in agreement with our goal of minimizing the use of toxic or controlled reagents.

In conclusion, a gram-scale synthesis of gefitinib was accomplished in four steps from commercially available 2,4-dichloro-6,7-dimethoxyquinazoline. Reaction temperatures did not exceed 55 °C, and workup procedures took advantage of the superior crystallization properties of the C(2)-chlorinated quinazolines in methanol. Thus, all purifications were performed by filtrations or crystallizations. No protective groups were required, and reagents such as DMF, SOCl2, POCl3, and TMSI were avoided. A new application of an ionic liquid streamlined the demethylation step, and a selective dehalogenation by using zinc, acetic acid, and TMEDA proved successful.

Funding Information

This work was partially supported by Sterling, Perugia, Italy.

Acknowledgement

The authors are grateful to the staff and chemists at Sterling, Perugia, Italy, for partial financial support of this work, and for many stimulating questions.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610375.

References and Notes

(1) Gridelli, C.; De Marinis, F.; Di Maio, M.; Cortinovis, D.; Cappuzzo, F.; Mok, T. Lung Cancer 2011, 72, 249.

(9) Li, F.; Feng, Y.; Meng, Q.; Li, W.; Li, Z.; Wang, Q.; Tao, F. ARKIVOC 2007, (i), 40.

(25) 2-Chloro-N-(3-chloro-4-fluorophenyl)-6,7-dimethoxyquinazolin-6(3)-ol (3)

A suspension of quinazolinamine 2 (4.11 g, 11.2 mmol) in CH2Cl2 (67.5 mL) was added in an ice bath and treated with portionwise addition of Me3NHCl (3.23 g, 33.7 mmol). After addition was complete, the reaction mixture was warmed to r.t. and stirred for 2 h. This mixture (12.2 g in 67.5 mL CH2Cl2) was used in the subsequent reaction without further purification or concentration.

2-Chloro-4-[(3-chloro-4-fluorophenyl)amino]-7-methoxyquinazolin-6(3)-ol (3)
hot MeOH (100 mL), heated to reflux for 10 min, and then allowed to cool and precipitate for 6 h while stirring was maintained. The solid was collected by filtration, washed with MeOH (10 mL) and dried in vacuo (0.5 Torr, 20 °C) to give a white solid consisting of a 97:3 mixture of regioisomers; yield: 1.26 g (3.56 mmol, 32%).

Major Regioisomer 3

Mp 335.4–336.7 °C; TLC: Rf = 0.4 (5% MeOH–CH2Cl2); IR (ATR, neat): 3392, 2555, 1620, 1571, 1517, 1498, 1421, 1350, 1283, 1216, 1157, 1010, 973, 844, 802, 735 cm⁻¹. 1H NMR (400 MHz, DMSO-d6): δ = 9.86 (s, 1 H), 9.83 (s, 1 H), 8.09 (dd, J = 6.8, 2.8 Hz, 1 H), 7.80–7.76 (m, 1 H), 7.46 (app t, J = 9.2 Hz, 1 H), 7.20 (s, 1 H), 3.97 (s, 3 H). 13C NMR (100 MHz, DMSO-d6): δ = 157.5, 154.7, 153.2, 152.3, 147.3, 147.0, 136.2, 123.6, 122.5, 118.8, 116.5, 107.9, 106.7, 105.7, 56.1. 19F NMR (376 MHz, DMSO-d6): δ = –122.4; HRMS (LC/MS, ESI+): m/z [M + H]+ calcd for C15H11ClF3N3O2: 354.0207; found: 354.0208.

(Major Regioisomer 3 (3.56 mmol, 32%).

Solid consisting of a 97:3 mixture of regioisomers; yield: 1.26 g (10 mL) and dried in vacuo (0.5 Torr, 20 °C) to give as a white solid consisting of a 97:3 mixture of regioisomers; yield: 1.26 g (10 mL) and dried in vacuo (0.5 Torr, 20 °C) to provide a colorless solid; yield: 1.36 g, 2.82 mmol.

Characteristic Signals for Minor Regioisomer: 2-Chloro-4-[(3-chloro-4-fluorophenyl)amino]-6-methoxyquinazolin-7-ol (6)

1H NMR (400 MHz, DMSO-d6): δ = 10.67 (s, 1 H). 19F NMR (376 MHz, DMSO-d6): δ = –120.0.

2-Chloro-N’-[(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholino-propoxy)quinazolin-4-amine (4)

A solution of quinazolinol 3 (1.25 g, 3.53 mmol), 4-[(3-chloro-propoxy)morpholin-4-yl)morpholine (0.59 mL, 3.9 mmol), and Cs2CO3 (2.30 g, 7.06 mmol) in degassed DMSO (10.0 mL) was stirred at 40 °C under N2, while the reaction was monitored by TLC (5% MeOH–CH2Cl2); starting material: Rf = 0.6; product: Rf = 0.3).

After 2.5 h, the mixture was cooled to r.t., diluted with EtOAc (100 mL), and extracted. The organic layer was washed sequentially with sat. aq NaHCO3 (2 × 25 mL), 1 M aq LiCl (7.5 mL), and neat): 3365, 3163, 2816, 2816, 1622, 1578, 1578, 1530, 1497, 1472, 1426, 1393, 1353, 1280, 1217, 1112, 1044, 993, 957, 850, 772 cm⁻¹. 1H NMR (400 MHz, DMSO-d6): δ = 9.57 (s, 1 H), 8.50 (s, 1 H); 8.11 (dd, J = 6.8, 2.8 Hz, 1 H), 7.81 (s, 1 H), 7.80–7.77 (m, 1 H), 7.45 (app t, J = 9.2 Hz, 1 H), 7.21 (s, 1 H), 4.18 (t, J = 6.0 Hz, 2 H), 3.94 (s, 3 H), 3.58 (app t, J = 4.4 Hz, 4 H), 2.39 (br s, 4 H), 2.03–1.96 (m, 2 H). 13C NMR (100 MHz, DMSO-d6): δ = 156.0, 154.5, 152.6, 151.9, 148.3, 147.0, 136.8, 123.5, 122.4, 118.8, 118.7, 116.6, 116.4, 108.8, 107.3, 102.5, 67.1, 66.2, 55.9, 55.0, 53.4, 25.9. 19F NMR (376 MHz, DMSO-d6): δ = –123.3; HRMS (LC/MS, ESI+): m/z [M + H]+ calcd for C23H23ClF3N3O2: 447.1594; found: 447.1593.

Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, 471–476

Letter