Synlett 2019; 30(06): 685-693
DOI: 10.1055/s-0037-1610339
account
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed C–H Silylation Reactions with Disilanes

Bo Zhou
,
Ailan Lu
,
Yanghui Zhang*
The work was supported by the National Natural Science Foundation of China (21372176 and 21672162) and Shanghai Science and Technology Commission (14DZ2261100).
Further Information

Publication History

Received: 09 October 2018

Accepted after revision: 29 October 2018

Publication Date:
18 December 2018 (online)


Abstract

Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with di­silanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.

1 Introduction and Background

2 Allylic C–H Silylation Reaction

3 Coordinating-Ligand-Directed C–H Silylation Reaction

4 Disilylation of C(sp2),C(sp2)-Palladacycles That are Generated by C(sp2)–H activation

5 Disilylation of C(sp2),C(sp3)-Palladacycles That are Generated by C(sp3)–H Activation

6 Disilylation of C,C-Palladacycles That are Generated through Domino Processes

7 Summary and Outlook

 
  • References

    • 1a Silicon Polymers . Muzafarov AM. Springer; Heidelberg: 2011
    • 1b Silicon-Containing Polymers . Jones RG, Ando W, Chojnowski J. Kluwer Academic; Dordrecht: 2000
    • 2a Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002
    • 2b Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 3a Chemistry of Organosilicon Compounds . Rappoport Z, Apeloig Y. Wiley-VCH; New York: 2001
    • 3b Silicon in Organic Organometallic and Polymer Chemistry . Brook MA. John Wiley and Sons; New York: 2000
    • 4a Lickiss PD. Adv. Inorg. Chem. 1995; 42: 147
    • 4b Denmark SE, Neuville L. Org. Lett. 2000; 2: 3221
    • 5a Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y. Org. Lett. 2002; 4: 1843
    • 5b Manoso AS, DeShong P. J. Org. Chem. 2001; 66: 7449
    • 5c Denmark SE, Smith RC, Chang W.-TT, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
    • 5d Denmark SE, Kallemeyn JM. J. Am. Chem. Soc. 2006; 128: 15958
    • 6a CH Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
    • 6b Zhang Y, Shi G, Yu J-Q. In Comprehensive Organic Synthesis . Molander G, Knochel P. Elsevier; Oxford: 2014. 2nd ed., Vol. 3 1101-1209
    • 6c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 6d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 6e Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
    • 6f Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 6g Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 6h Baudoin O. Acc. Chem. Res. 2017; 50: 1114
    • 6i Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
    • 9a Klare HF. T, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
    • 9b Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. Chem. Lett. 2000; 750
    • 9c Murai M, Takami K, Takai K. Chem. Eur. J. 2015; 21: 4566
    • 9d Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
    • 9e Ishiyama T, Sato K, Nishio Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 5346
    • 9f Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
  • 10 Larsson JM, Zhao TS. N, Szabo KJ. Org. Lett. 2011; 13: 1888
  • 11 Nakai S, Matsui M, Shimizu Y, Adachi Y, Obora Y. J. Org. Chem. 2015; 80: 7317
    • 12a Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 12b Thomas WL, Melanie SS. Chem. Rev. 2010; 110: 1147
    • 12c Dick A, Hull K, Sanford M. J. Am. Chem. Soc. 2004; 126: 2300
    • 12d Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 12e Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
  • 13 Kanyiva K, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
    • 14a Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 14b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 14c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 14d He G, Zhang S.-Y, Nark WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
    • 14e Chen K, Li X, Zhang S.-Q, Shi B.-F. Chem. Commun. 2016; 52: 1915
    • 14f Pan F, Shen P.-X, Zhang L.-S, Wang X, Shi Z.-J. Org. Lett. 2013; 15: 4758
  • 15 Chen CP, Guan MY, Zhang JY, Wen ZK, Zhao YS. Org. Lett. 2015; 17: 3646
  • 16 Pan J.-L, Chen C, Ma Z.-G, Zhou J, Wang L.-R, Zhang S.-Y. Org. Lett. 2017; 19: 5216
  • 17 Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF. Angew. Chem. Int. Ed. 2016; 55: 13859
  • 18 Pan J.-L, Li Q.-Z, Zhang T.-Y, Hou S.-H, Kang J.-C, Zhang S.-Y. Chem. Commun. 2016; 52: 13151
    • 19a Tang R.-Y, Li G, Yu J.-Q. Nature 2014; 507: 215
    • 19b Chu L, Shang M, Tanaka K, Chen Q, Pissarnitski N, Streckfuss E, Yu J.-Q. ACS Cent. Sci. 2015; 1: 394
    • 19c Deng Y, Yu J.-Q. Angew. Chem. Int. Ed. 2015; 54: 888
    • 19d Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
    • 19e Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
    • 19f Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
    • 19g Li S, Ji H, Cai L, Li G. Chem. Sci. 2015; 6: 5595
    • 19h Li S, Cai L, Ji H, Yang L, Li G. Nat. Commun. 2016; 7: 10443
    • 19i Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
  • 20 Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Organometallics 2017; 36: 2418
    • 22a Jiang H, Zhang Y, Chen D, Zhou B, Zhang Y. Org. Lett. 2016; 18: 2032
    • 22b Chen D, Shi G, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2130
    • 22c Shi G, Chen D, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2958
    • 22d Wu Z, Ma D, Zhou B, Ji X, Ma X, Wang X, Zhang Y. Angew. Chem. Int. Ed. 2017; 56: 12288
    • 22e Shao C, Wu Z, Ji X, Zhou B, Zhang Y. Chem. Commun. 2017; 53: 10429
    • 22f Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2017; 360: 887
    • 22g Ma D, Shi G, Wu Z, Ji X, Zhang Y. J. Org. Chem. 2018; 83: 1065
    • 22h Pan S, Jiang H, Zhang Y, Chen D, Zhang Y. Org. Lett. 2016; 18: 5192
  • 23 Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 1
  • 24 Ma X, Lu A, Ji X, Shi G, Zhang Y. Asian J. Org. Chem. 2018; 7: 1403
  • 25 Li W, Xiao G, Deng G, Liang Y. Org. Chem. Front. 2018; 5: 1488
    • 26a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J.-L, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
    • 26b Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
    • 26c Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
    • 26d Wang M, Zhang X, Zhuang Y.-X, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
    • 27a Tietze LF, Beifuss U. Angew. Chem. Int. Ed. Engl. 1993; 32: 131
    • 27b Tietze LF. Chem. Rev. 1996; 96: 115
    • 27c Tietze LF, Modi A. Med. Res. Rev. 2000; 20: 304
    • 27d Domino Reactions in Organic Synthesis . Tietze LF, Brasche G, Gericke KM. Wiley-VCH; Weinheim: 2009
    • 27e Tietze LF, Dufert A. Pure Appl. Chem. 2010; 82: 1375
    • 28a Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
    • 28b Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2010; 292: 1
    • 28c Juntao Y, Mark L. Nat. Chem. 2015; 7: 863
    • 28d Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
  • 29 Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
  • 30 Xiao G, Chen L, Deng G, Liu J, Liang Y. Tetrahedron Lett. 2018; 59: 1836
  • 31 Zhou B, Lu A, Shao C, Liang X, Zhang Y. Chem. Commun. 2018; 54: 10598
  • 32 Schweicher G, Lemaur V, Niebel C, Ruzié C, Diao Y, Goto O, Lee W.-Y, Kim Y, Arlin J.-B, Karpinska J, Kennedy AR, Parkin SR, Olivier Y, Mannsfeld SC. B, Cornil J, Geerts YH, Bao Z. Adv. Mater. 2015; 27: 3066