Synlett 2018; 29(18): 2362-2371
DOI: 10.1055/s-0037-1609907
account
© Georg Thieme Verlag Stuttgart · New York

Syntheses and Redox Chemistry of Antiaromatic Core-Modified Isophlorinoids

Santosh P. Panchal
,
Baddigam Kiran Reddy
,
Venkataramanarao G. Anand*
SP and BKR thanks CSIR, New Delhi, India for their respective research fellowships. VGA thanks DST, New Delhi, India for the Swarnajayanti Fellowship.
Further Information

Publication History

Received: 15 June 2018

Accepted after revision: 18 June 2018

Publication Date:
23 July 2018 (online)


Abstract

During the attempted total synthesis of chlorophyll, Woodward hypothesized the formation of tetrapyrrolic 20π isophlorin as a transient antiaromatic intermediate which provides a plausible template to synthesize stable antiaromatic molecules. Despite its structural similarity with the 18π aromatic porphyrin, it significantly differs in its electronic and chemical properties. However, due to its unstable nature under ambient conditions it immediately gets oxidized to stable 18π aromatic porphyrin. Similar macrocyclic structures with β-substituted heterocycles, such as furan/thiophene/selenophene, have been synthesized, which undergo facile oxidation to yield the 18π porphyrin dication. Attempts to synthesize stable tetrapyrrolic isophlorin and its metal complex have remained unaccomplished till date. Strategies to synthesize stable core-modified 20π isophlorin and its confused isophlorin derivative have met with considerable success. Predominantly, they are synthesized by replacing three or four pyrroles with furan/thiophene. The 20π systems either with four furan units or with a ‘pair’ of furan and thiophene units were sufficiently stable enough to resist oxidation towards the corresponding porphyrin dication. The 20π isophlorins displayed noncovalent interactions with the curved π surface of fullerene which predominantly rises due to van der Waals attraction between the dissimilar π systems. This antiaromatic isophlorin-fullerene complexes were obtained and successfully characterized by single-crystal X-ray diffraction studies. Replacing only three pyrroles by furan rings yielded the first stable pyrrole derivative of antiaromatic 20π isophlorin, which can be reversibly oxidized to 18π aromatic porphyrin without deprotonating the inner pyrrole NH. In addition, replacing all the pyrrole units of N-confused porphyrin with thiophene yielded the first derivative of confused isophlorin. Further, its two-electron oxidation led to the formation of 18π aromatic cation with enhanced aromaticity. The structure and electronic properties of the oxidized and neutral species were unambiguously determined from a combination of spectroscopic techniques, X-ray crystallography, and computational methods. These studies reveal that antiaromatic systems like isophlorin and its confused isophlorin derivative can be stabilized under ambient conditions and they offer potential to explore the chemistry of 4nπ systems. This Account focuses of recent advances in 20π antiaromatic isophlorins, confused isophlorins, and nocorroles along with their redox chemistry.

1 Introduction

2 Stable 20π Isophlorins

2.1 Furan-/Thiophene-Based Isophlorins

2.2 Pyrrole Isophlorins

3 Confused Isophlorins

3.1 Isophlorin-Fullerene

3.2 meso-meso-Bridged Tetraoxaisophlorin Dimer

4. Norcorroles

5. Conclusion and Outlook

 
  • References

  • 1 Woodward RB. Angew. Chem. 1960; 72: 651
  • 2 Woodward RB. Ayer WA. Beaton JM. Bickelhaupt F. Bonnett R. Buchschacher P. Closs GL. Dutler H. Hannah J. Hauck FP. Itǒ S. Langemann A. Goff EL. Leimgruber W. Lwowski W. Sauer J. Valenta Z. Volz H. Tetrahedron 1990; 46: 7599
  • 3 Pohl M. Schmickler H. Lex J. Vogel E. Angew. Chem., Int. Ed. Engl. 1991; 30: 1693
  • 4 Bachmann R. Gerson F. Gescheidt G. Vogel E. J. Am. Chem. Soc. 1992; 114: 10855
  • 5 Vogel E. Pure Appl. Chem. 1993; 65: 143
  • 6 Reddy BK. Basavarajappa A. Ambhore MD. Anand VG. Chem. Rev. 2017; 117: 3420
  • 7 Rothemund P. J. Am. Chem. Soc. 1935; 57: 2010
  • 8 Vogel E. Dorr J. Herrmann A. Lex J. Schmickler H. Walgenbach P. Gisselbrecht JP. Gross M. Angew. Chem., Int. Ed. Engl. 1993; 32: 1597
  • 9 Vogel E. Fröde C. Breihan A. Schmickler H. Lex J. Angew. Chem., Int. Ed. Engl. 1997; 36: 2609
  • 10 Liu C. Shen D.-M. Chen Q.-Y. J. Am. Chem. Soc. 2007; 129: 5814
  • 11 Cissell JA. Vaid TP. Rheingold AL. J. Am. Chem. Soc. 2005; 127: 12212
  • 12 Cissell JA. Vaid TP. Yap GP. J. Am. Chem. Soc. 2007; 129: 7841
  • 13 Weiss A. Hodgson MC. Boyd PD. W. Siebert W. Brothers PJ. Chem. Eur. J. 2007; 13: 5982
  • 14 Matano Y. Nakabuchi T. Imahori H. Pure Appl. Chem. 2010; 82: 583
  • 15 Matano Y. Nakabuchi T. Fujishige S. Nakano H. Imahori H. J. Am. Chem. Soc. 2008; 130: 16446
    • 16a Furuta H. Asano T. Ogawa T. J. Am. Chem. Soc. 1994; 116: 767
    • 16b Chmielewski PJ. Latos-Grazynski L. Rachlewicz K. Glowiak T. Angew. Chem., Int. Ed. Engl. 1994; 33: 779
    • 16c Furuta H. Maeda H. Osuka A. Chem. Commun. 2002; 1795
  • 17 Lash TD. Chem. Asian J. 2014; 9: 682
    • 18a Pushpan SK. Srinivasan A. Anand VG. Chandrashekar TK. Subramanian A. Roy R. Sugiura K. Sakata Y. J. Org. Chem. 2001; 66: 153
    • 18b Heo P.-Y. Lee C.-H. Tetrahedron Lett. 1996; 37: 197
    • 18c Lee C.-H. Kim H.-J. Tetrahedron Lett. 1997; 38: 3935
    • 19a Sprutta N. Latos-Grazynski L. Tetrahedron Lett. 1999; 40: 8457
    • 19b Schmidt I. Piotr JC. Tetrahedron Lett. 2001; 42: 6389
    • 19c Lash TD. Von Ruden AL. J. Org. Chem. 2008; 73: 9417
  • 20 Reddy JS. Anand VG. J. Am. Chem. Soc. 2008; 130: 3718
  • 21 Konno M. Mack J. Kobayashi N. Suenaga M. Yoza K. Shinmyozu T. Chem. Eur. J. 2012; 18: 13361
  • 22 Panchal SP. Gadekar SC. Anand VG. Angew. Chem. Int. Ed. 2016; 55: 7797
  • 23 Latos-Grazynski L. Kadish KM. Smith KM. Guilard R. The Porphyrin Handbook . Academic Press; New York: 2000
  • 24 Rathore R. Kumar AS. Lindeman SV. Kochi JK. J. Org. Chem. 1998; 63: 5847
  • 25 Schleyer PV. R. Maerker C. Dransfeld A. Jiao H. van Eikema Hommes NJ. R. J. Am. Chem. Soc. 1996; 118: 6317
  • 26 Panchal SP. Anand VG. Org. Lett. 2017; 19: 4854
  • 27 Hu Z. Atwood JL. Cava MP. J. Org. Chem. 1994; 59: 8071
    • 28a Boyd PD. W. Hodgson MC. Rickard CE. F. Oliver AG. Chaker L. Brothers PJ. Bolskar RD. Tham FS. Reed CA. J. Am. Chem. Soc. 1999; 121: 10487
    • 28b Boyd PD. W. Reed CA. Acc. Chem. Res. 2005; 38: 235
  • 29 Reddy BK. Gadekar SC. Anand VG. Chem. Commun. 2015; 51: 8276
  • 30 Reddy BK. Gadekar SC. Anand VG. Chem. Commun. 2016; 52: 3007
  • 31 Osuka A. Shimidzu H. Angew Chem., Int. Ed. Engl. 1997; 36: 135
    • 32a Stepien M. Sprutta N. Latos-Grazynski L. Angew. Chem. Int. Ed. 2011; 50: 4288
    • 32b Saito S. Osuka A. Angew. Chem. Int. Ed. 2011; 50: 4342
  • 33 Broering M. Koehler S. Kleeberg C. Angew. Chem. Int. Ed. 2008; 47: 5658
  • 34 Ito T. Hayashi Y. Shimizu S. Shin J-Y. Kobayashi N. Shinokubo H. Angew. Chem. Int. Ed. 2012; 51: 8542
  • 35 Yonezawa T. Shafie SA. Hiroto S. Shinokubo H. Angew. Chem. Int. Ed. 2017; 56: 11822
  • 36 Fu X. Meng Y. Li X. Stepien M. Chmielewski PJ. Chem. Commun. 2018; 54: 2510
  • 37 Shin J.-Y. Yamada T. Yoshikawa H. Awaga K. Shinokubo H. Angew. Chem. Int. Ed. 2014; 53: 3096
  • 38 Nozowa R. Tanaka H. Cha W.-Y. Yongseok H. Shimizu S. Shin J.-Y. Kowalczyk T. Irle S. Kim D. Shinokubo H. Nat. Commun. 2016; 7: 13620