Total Synthesis of (±)-Salimabromide

Significance: Unlike their terrestrial counterparts, myxobacteria of marine origin have remained underexplored by the scientific community. Recently, the polyketide antibiotic salimabromide was isolated from obligate marine myxobacterium *Enhygromyxa salina*. Magauer’s team mastered the challenges associated with the preparation of this structurally demanding and biologically potent secondary metabolite. Pivotal in their approach to this bridged tetracycle were a Wagner–Meerwein rearrangement/Friedel–Crafts cyclization, a \[2+2\] cycloaddition, and a Baeyer–Villiger reaction.

Comment: The authors commenced with the expedient preparation of ketone *C* from \(m\)-anisaldehyde and pinacolone. Following epoxidation and treatment with catalytic acid, Wagner–Meerwein rearrangement and cyclization were effected, furnishing primary alcohol *D*. This intermediate was further elaborated to amide *G*. The ketiminium derived from *G* underwent \[2+2\] cycloaddition to furnish *H* in excellent yield. Ultimately, allylic oxidation, Baeyer–Villiger reaction, and dibromination of the arene afforded (±)-salimabromide. An asymmetric route to intermediate *D* has been devised by the authors as well.