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The clinical course and treatment response of Parkinson’s
disease (PD) are extremely heterogeneous, creating
challenges in its management. Similarly, PD’s etiology is
heterogeneous, multifactorial, and often complex. Never-
theless, our understanding of the disease’s genetic causes
and risk factors has undergone substantial development in
the last 20 years. The genetic risks for PD can be divided
into those associated with a high risk for PD and those that
increase the PD risk only modestly. Mutations associated
with a high risk for PD are often called monogenic, Mende-
lian, or causative (from hereon, causative) and underlie 5 to
10% of PD cases.1 Causative mutations are rarer than risk
factors. In some cases, different alterations in the same
gene are causative, whereas others are considered risk
factors. A classic example is the gene SNCA, which encodes
α-synuclein. A rare A53T mutation in the gene causes PD in
the majority of carriers, but a single nucleotide polymor-
phism in the vicinity of the gene is a known risk factor
replicated in multiple genome-wide association studies.
Here we will review the clinical features of the major
causative genes: LRRK2, SNCA, VPS35, Parkin, PINK1, and
DJ1, as well as GBA.

LRRK2
History
An autosomal dominant PD (ADPD) cohort was first described
among a Nebraska kindred in 1995.2 The locus 12p11.21 was
then identified via a genome-wide linkage analysis of a Japa-
nese family with ADPD in 2002.3 Through recombination
mapping and candidate gene sequencing, the LRRK2 gene
was identified in 2004.4,5 Subsequently, multiple pathogenic
mutations have been identified, with ethnic distribution and
pathogenicity varying by the specific mutation.

Mechanism of Pathogenicity
Our current understanding of LRRK2 function, interactions,
and pathogenicity in PD is incomplete. LRRK2 contains
multiple functional domains, including a kinase domain. It
is believed that increased LRRK2 activity increases the risk
for PD because increased kinase activity has been associated
with nigrostriatal degeneration and Lewy body (LB) forma-
tion. In addition, the G2019S mutation, located in the kinase
domain, has been associatedwith increased phosphorylation
activity in vivo.6 However, the pathogenicity of other muta-
tions may be mediated by other mechanisms. Furthermore,
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the substrates of LRRK2 phosphorylation (except for auto-
phosphorylation) were unknown until recently. Just recently
identified as substrates were the Rab GTPases (Rab5 and
Rab7), which affect signaling cascades, degradation, and
endosomal trafficking.6,7 Abnormal mitochondrial morphol-
ogy and function have been noted among LRRK2 carriers, as
well as an abnormal accumulation in autophagic vacuoles,
thought to be linked via the regulatory protein 5′ AMP-
activated protein kinase.6

Frequency and Ethnic Distribution
Ethnic distribution varies widely by mutation. The most
common mutation,8 G2019S, is especially common in North
African Berbers and Ashkenazi Jews (AJs). Mutations in the
1441 nucleotide are more common in Spain among the
Basque population.9Other mutations are implicated in Asian
populations. The I2020T mutation has been reported in
Japanese cohorts,10 although the mutation ultimately ap-
pears to be rare among other Asian populations.11A common
variant in Asian populations, G2385R, has been identified as
a risk factor in Chinese, Japanese, and Korean popula-
tions.12–14 Among Han Chinese populations, it has been
reported with a frequency of 8 to 11.7% among PD cohorts
and 0.5 to 3.3% in the general population.15–17 The mutation
frequency appears similar in a Korean population.13 Few
studies have compared the PD phenotype with that of other
mutations, but the motor phenotype may be more severe
than for G2019S PD; G2385R PD patients have been noted to
have higher Unified Parkinson’s Disease Rating Scale
(UPDRS) motor scores with more frequent fluctuations
than G2019S PD or idiopathic PD (iPD) patients.18

G2019S
Of all the LRRK2mutations, the best described is G2019S. The
mutation has been identified among PD patients in multiple
ethnic groups including Norwegians,19 Italians, Portuguese,
and Brazilians.20 In a large worldwide study, mutation
frequency was found to be 1% among sporadic and 4% among
familial PD patients, but with the highest mutation frequen-
cy among North African Arab and Ashkenazi Jewish popula-
tions: 39% and 38% among North African Arabs, and 10% and
28% among Ashkenazi Jews with sporadic and familial PD,
respectively.21 It is apparently rare in Asian populations.22

Penetrance estimations varywidely and range between 25 to
100% by 80 years.21,23

Phenotype
Overall, the G2019Smotor phenotype appears to overlapwith
that of iPD.19 However, carriers more commonly manifest a
postural instability gait difficulty phenotype than do non-
carriers (92.3%vs. 58.9%).24,25Agood response to levodopahas
been reported,26 although it has been associatedwith levodo-
pa-induced dyskinesias (LIDs).27 Regarding the rate of pro-
gression, a longitudinal study byNabli et al found similar rates
of progression in the UPDRS and Hoehn and Yahr Scale scores
between G2019S and iPD cohorts at 6-year follow-up.25

G2019S PD patients have fewer nonmotor manifestations
than do noncarriers. Ben Sassi et al found similar cognitive

involvement in carrier versus noncarrier PD patients.28 In a
larger study, Alcalay et al reported superior performance in
attention, executive function, and language domains in
G2019S PD patients versus iPD patients, despite longer
disease duration in the G2019S cohort.29G2019S PD patients
appear to have less depression18 and less hyposmia than iPD
patients,30–32 and less probable rapid eye movement sleep
behavior disorder (RBD), as assessed by questionnaire, than
iPD patients.30,33

LRRK2’s potential gain of function mechanism has raised
concern for a possible increased risk of malignancy. An
increased risk of nonskin cancers among G2019S carriers
versus noncarriers has been reported in AJ PD patients34,35

and requires further longitudinal study.

Premotor State
Much effort is invested in identifying carriers without motor
PD who may develop PD. A subset of nonmanifesting carriers
may have impaired olfaction compared with noncarrier con-
trols, suggesting a possible preclinicalmarker for PD, although
longitudinal studies are lacking.32,36 In a cross-sectional study,
Mirelman et al found that the most prominent clinical differ-
encebetween carriers of G2019S andnoncarrierswas reduced
arm swing when walking.37,38 One study found an increased
risk of premorbid mood disorders (odds ratio, 6) in carriers
versus noncarriers, although there were no differences found
in neuropsychological testing.39

Pathology
Postmortem examination is notable for the degeneration of
the substantia nigra (SN) and locus coeruleus (LC), but with
variable LB and tau pathology. The initial report by Zimprich
et al of Y1699C and R1441C mutation carriers noted diverse
pathology including LB PD, diffuse LB disease, and nigral
degeneration, as well as progressive supranuclear palsy-like
pathology.4 Subsequent examinations reported variable cor-
tical LB pathology, redemonstrated through two subsequent
case series. Upon review of the postmortem examination of
28 G2019S PD patients, Poulopoulos et al reported SN and LC
neuronal loss in all cases that had parkinsonism, with LB
pathology in a majority but with variable cortical involve-
ment. They also noted tau pathology in a majority, but with
variable location and severity. Interestingly, PD patientswith
mutations other than G2019S had a lower frequency of LB
pathology and more SN versus LC degeneration, suggesting
mutation-specific pathogenicity.40 Upon review of the post-
mortem examination of 37 LRRK2 PD patients with corre-
sponding clinical data, Kalia et al found neuronal SN loss in all
cases, redemonstrating LB variability. Of note, on clinico-
pathological correlation, a primarily motor phenotype was
associated with an absence of LBs, and nonmotor features
were associated with the presence of LBs.41

SNCA

History
Alpha synuclein (SNCA) mutations have emerged as a rare,
but important cause of ADPD with high penetrance.
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Polymeropoulos et al first identified an Italian kindred with
ADPD with an iPD phenotype, but with heterogeneous age-
at-onset, which was associated with a locus at 4q21-23 in
1996 through linkage analysis.42 Subsequently, amutation in
SNCA, A53T, was identified,43 but with apparently rare
frequency based on early mutation screening among iPD
cohorts of early or late-onset PD.44,45 Four other missense
mutations have since been identified. A30P and E46K mis-
sense mutations were identified in German and Spanish
kindreds, respectively.46,47 More recently, a H50Q point
mutation has been reported in a British family.48 A G51D
mutation was reported in a French family with atypical PD,
with prominent psychiatric symptoms and associated pyra-
midal signs. The postmortem examination was notable for
cytoplasmic inclusions in the pyramidal tracts as well as in
thebasal ganglia.49Overall, in comparisonwith iPD, the SNCA
PD clinical course is notable for earlier age of onset andmore
rapid progression, with good levodopa response, but early
motor fluctuations.50 Severe depression, including complet-
ed suicide, has been reported.51

Of the missense mutations, A53T is most common, al-
though still rare overall, with only �70 reported cases, with
an apparently aggressive clinical course, notable for a 10-
year earlier age-at-onset than the other missense muta-
tions.50 Recently, Papadimitriou et al performed a prospec-
tive 2-year longitudinal follow-up among A53Tsymptomatic
and asymptomatic carriers, noting prominent motor and
nonmotor decline that included olfactory, autonomic, and
cognitive dysfunction, with a disease penetrance of �90%.52

Mechanism of Pathogenicity
The mechanism of pathogenicity remains unclear, but given
that SNCA-associated PD demonstrates a gene dosage effect,
a gain of function is suspected. Gene multiplication appears
to bemore common among European and Asian populations.
Triplication has been associated with an earlier onset of
disease, a more severe phenotype with some atypical fea-
tures including myoclonus, and more rapid progression than
in duplication.50 A case of gene triplication reported by
Singleton et al had a clinical course notable for early onset,
and a postmortem examination notable for prominent cor-
tical and subcortical LB pathology.53 Duplications have also
been reported in multiple ADPD families,54 as well as in
sporadic PD.55,56 Phenotypes reported include prominent
psychiatric symptoms including visual hallucinations.54

VPS35

The VPS35 gene was identified in 2011 among a Swiss
kindred with late-onset ADPD via next-generation sequenc-
ing57 and an Austrian ADPD kindred via exome sequencing.58

In population studies, the mutation frequency appears rare,
with one study of 475 patients with familial PD finding no
cases of D620N mutation.59 Other studies among European
and Asian populations have found a frequency of �1% in
ADPD, with Lesage et al finding the D620N mutation in 3 of
246 ADPD patients and not in controls.60 A similar frequency
was reported in a Japanese ADPD population; the motor

phenotype in that study was tremor-predominant PD.61

However, larger phenotype-focused studies are lacking.

Parkin

History
Parkin mutations are the most common cause of autosomal
recessive PD and are especially prevalent in PD with onset
before age 30. Ishikawa et al characterized a cohort of
patients with familial juvenile parkinsonism in 1996, noting
female predominance with young onset (mean age-at-onset
27.8 years) and slow progression. The phenotype was nota-
ble for relativelymild tremor, rigidity, and bradykinesia, with
some atypical features including prominent freezing of gait,
retropulsion, and foot dystonia, as well as hyperreflexia, with
notable sleep benefit on most symptoms; no dementia or
autonomic features were noted. An excellent response with
levodopawas noted, but with frequent LID andwearing off.62

Matsumine et al identified an associated locus at 6q25.2–27
through linkage analysis.63 Kitada et al then identified the
Parkin gene and protein in 1998.64 Hattori et al identified
four homozygous deletional mutations.65 It was subsequent-
ly implicated in sporadic cases66 and is now confirmed in
multiple ethnic groups including European, Hispanic, African
American, and North African.67–69

Mechanism of Pathogenicity
Themechanism of pathogenicity remains unclear. Parkin is an
E3 ubiquitin ligase protein, catalyzing the transfer of ubiquitin
to its specific target protein. Multiple target proteins with
widely variable functions have been suggested as possible
Parkin substrates. A role in protein targeting for proteasomal
degradation has been proposed.70 In one capacity, Parkin
appears to work with PINK1 (see below) in organellar quality
control through the activation of mitophagy in the setting of
mitochondrial damage.71 Finding the mechanism of the spe-
cific pathological changes of PD requires continued investiga-
tion, but given that most Parkin postmortem studies (detailed
below) do not demonstrate α-synuclein pathology, the mech-
anism may be different than iPD.

Frequency
Parkinmutations are the most common cause of early-onset
PD, defined in different studies as onset before age 40 to 51
years. The reportedmutation frequency has variedwidely. In
a meta-analysis of studies among early-onset PD subjects,
Kilarski et al found a mutation frequency of 15.5% among
familial (although significantly higher in known consanguin-
eous cases at 31.4%) and 4.3% among sporadic cases.72

However, at least 60 mutations and variants have been
identified, raising significant challenges in determining
pathogenicity, which may vary with specific mutation.73 In
addition, deletions and duplications are especially common,
which complicate Parkin genotyping. Such alterations may
not be identified in genome-wide association studies or
whole-exome sequencing, and in addition to Sanger se-
quencing, a dosage analysis is required to determine if
deletions or duplications are present. Allele frequency may
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be ethnically dependent.74 Marder et al found an increased
risk of Parkin mutation (odds ratio, 2.8) among Hispanic
versus non-Hispanic white early-onset PD patients.69

Phenotype
The clinical phenotype was first described by Ishikawa et al
as above, although phenotypic variability has been noted,75

in part related to specific mutations. Parkin-associated PD is
predominantly early-onset; late-onset cases are established,
but are rarer. Cases with later onset (> 45 years old) have
been noted in studies including gene dosage analyses,76 but
with lower frequency than in early-onset PD.77,78 Disease
progression appears to be slower than iPD, also supported by
18F-DOPA positron emission tomography data.79

Nonmotor Symptoms
Overall, nonmotor symptoms appear less severe in Parkin PD
than in iPD. Data regarding cognitive function are cross-
sectional and overall suggest comparable, if not superior
cognitive function in Parkin PD compared with iPD patients.
Several studies have found comparable cognitive function
between Parkin PD and iPD groups by neuropsychological
testing.80,81 A follow-up study by the Consortium on Risk for
Early-Onset Parkinson’s Disease examined cognitive function
in early-onset PD with long-duration disease (>14 years) and
found carriers performed better on the Mini-Mental State
Examination;weremore likely to have lower scores on clinical
dementia ratings; and had better attention, memory, and
visuospatial performance.82 Parkin homozygotes and com-
poundheterozygoteswith PDmayhave less olfactory dysfunc-
tion than iPD83 patients or Parkin heterozygotes with PD.84

Parkin carriers may, however, have more severe impulse
control disorders than noncarriers, which may be a consid-
eration in treatment selection. Morgante et al recently
assessed impulse control behaviors in PD biallelic Parkin
mutation carriers versus noncarriers, matched for disease
duration, age, and dopamine dose equivalent. Although the
frequency of at least one impulse control behavior was
similar between both groups, Parkin carriers had a higher
frequency of compulsive shopping, binge eating, and pund-
ing/hobbyism; were more likely to be smokers; and more
likely to have higher Questionnaire for Impulsive-Compul-
sive Disorders in Parkinson’s Disease–Rating Scale scores.85

Parkin has been proposed to have a tumor-suppressor
function in systemic cancers,86–89 but this has not been
consistently supported in epidemiologic studies. A retro-
spective study by Alcalay et al did not find a difference in
reported cancer history among carriers versus noncarriers.90

Heterozygotes
It remains uncertain if heterozygous Parkinmutations confer a
risk for PD.77,91A few studies suggest that only specific genetic
mutations (e.g., duplications, deletions, or point mutations in
functionally crucial domains) increase PD risk.92,93

Deep Brain Stimulation
Given frequent motor fluctuations and dyskinesias, deep
brain stimulation (DBS) may be a relevant treatment consid-

eration for Parkin PD patients. STN DBS appears to have
similar efficacy for Parkin PD versus noncarriers. Romito et al
performed a post hoc genetic analysis of a series of patients
undergoing STN DBS, with a population including Parkin
carriers (one compound heterozygote and four heterozy-
gotes) and noncarriers, matched for disease duration and
age. The Parkin and non-Parkin groups showed a similar
reduction in UPDRS motor scores (56% vs. 51%) with a
nonsignificant trend to greater levodopa dose reduction
postoperatively in the Parkin group. Behavioral complica-
tions were similar, although limited by small numbers.94

Moro et al performed Parkin and PINK1 mutation screening
among 80 patients with early-onset PD who underwent
bilateral STN DBS, identifying 11 Parkin mutation carriers
(six homozygous or compound heterozygous; five heterozy-
gous) and one PINK1 homozygousmutation carrier. One-year
follow-up showed less improvement in mutation carriers by
UPDRS motor scores (56% improvement vs. 36% improve-
ment), but this difference was not maintained at the 3- to 6-
year follow-up (44% vs. 42%), suggesting mutation carriers
benefit from DBS, but not more than iPD patients.95 Among a
cohort of DBS patients screened for PD-associatedmutations,
Angeli et al found Parkin carriers had the youngest age of
onset, but longer disease duration beforeDBSwas required.96

Pathology
Postmortem examination is notable for SN neuronal loss, but
without prominent LB pathology. A review of 77 cases by
Pramstaller et al noted neuronal loss in the pigmented nuclei
of the brainstem (SN pars compacta [SNpc] and LC), but
typical LB pathology in only a portion of cases.97 More
recently, Doherty et al performed a postmortempathological
examination on Parkin PD patients, iPD patients, and con-
trols. Among the Parkin PD cases, they found focal nigral
degeneration with ventral predominance and absent or rare
LBs, with counts of SNpc demonstrating neuronal loss as
severe as in iPD, but with the relative preservation of the
dorsal tier, mild neuronal loss in the LC, and the dorsal motor
nucleus of vagus but not the nucleus basalis of Meynert,
raphe, or other regions. LB pathology was again minimal,
with sparse LBs noted in only two cases of five.98

PINK1

History
PINK1 mutations are the second-most common cause of
ARPD after Parkin, with some overlap with the Parkin
phenotype. The locus was first identified in a Sicilian family
(Marsala kindred) with four affected members with early-
onset PD, with a course notable for slow progression and a
sustained response to levodopa. Through linkage analysis, a
novel locus at 1p35-p36 was identified.99 In 2004, Valente
et al identified the associated protein, a mitochondrial
kinase, 1 PTEN-induced kinase (PINK1) in three affected
families, identifying two homozygous mutations of the
kinase domain.100 Valente et al subsequently noted PINK1
mutations in a cohort of Italian early-onset PD patients.101

Subsequent studies confirmed PINK1 mutations in North
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American,102 other European,103 and Asian populations.104

Mutation frequency is reported as�4 to 7% in sporadic early-
onset PD.101,105

Mechanism of Pathogenicity
As first suggested by Valente et al via cell culture studies,
PINK1 localizes to the mitochondria,99 imported there via
targeting. PINK1 is a serine/threonine kinase, also containing
critical regulatory sites.Mutations conferring a complete loss
of kinase activity are associated with early-onset PD.106

PINK1 functions most prominently together with Parkin in
the activation of mitophagy, accumulating on the outer
mitochondrial membrane in the setting of mitochondrial
damage.106 The specific mechanism of pathogenicity in PD is
currently unclear and requires continued investigation.

Phenotype
Phenotype was initially described in the above-mentioned
Marsala kindred.99 Initial studies noted typical parkinsonism
of slow progression, with good and persistent levodopa
response and minimal cognitive involvement.101,107 Later
studies noted some atypical features, including dystonia and
sleep benefit as seen in Parkin PD,105 as well as hyperre-
flexia.103RegardingDBS, as discussed above,Moro et al noted
a comparable response to iPD patients to STN DBS among
their cohort, which included one PINK1 PD patient.95

Nonmotor Symptoms
Psychiatric features may be present; anxiety and depression
have been reported.108 Hyposmia appears to be a common
finding in PINK1 PD. Ferraris et al compared olfaction in iPD,
PINK1 homozygous PD, PINK1 heterozygous PD, and PINK1
heterozygous asymptomatic carriers, noting all affected
PINK1 subjects and all but one of the PINK1 heterozygotes
to be hyposmic.109

Heterozygotes
Implications for heterozygotes remain controversial, but
heterozygosity may be a risk factor for late-onset PD, as
suggested by population studies105,110 and supported in
meta-analysis by Kasten et al.111 Among affected carriers,
the cardinal features and age-at-onset remained similar
between the homozygous and heterozygous groups, with a
trend toward more gait disturbance in the homozygous
group, but in the setting of longer average disease dura-
tion.111 In the preclinical state, heterozygotes may manifest
hyposmia.109

Pathology
Postmortem examinations are limited in number. Postmor-
tem examination has been reported on two PINK1 PD pa-
tients with atypical LB pathology. In a compound
heterozygous early-onset PD patient, Sammaranch et al not-
ed neuronal loss in the SNpc, with LB pathology in an atypical
distribution involving the reticular nuclei, SNpc, and the
nucleus of Meynert, but sparing the LC and amygdala.112

Recently, in a homozygous early-onset PD patient, Takanashi
et al found no LB pathology, apart from in a few olfactory

nerve neurites, but did note marked SN and LC
depigmentation.113

DJ1

van Duijn et al first identified a locus at 1p36, separate from
PARK6, in a consanguineous Dutch kindred with early-onset
PD.114 Bonifati et al then identified the DJ1 gene in a Dutch
and an Italian family, respectively. The phenotype among the
four subjects was early-onset PD (all < 41 years old), one
with blepharospasm, with two on treatment with levodopa
with good response, and one with motor fluctuation includ-
ing LID.115 Mutation frequency is apparently rare, with
studies finding a frequency of 0 to 1% in early-onset PD
cohorts116–118; a meta-analysis by Kilarski et al found an
overall mutation frequency of 0.4%, marginally higher among
familial PD (0.8%) than among sporadic PD (0.4%) cases.72

GBA

History
Clinical observation of parkinsonism among Gaucher’s dis-
ease (GD) patients led to the confirmation of increased PD
prevalence in that population. An initial case series among
GD patientswith PD described an aggressive phenotypewith
age-at-onset in the fourth to sixth decade of life, rapid
progression, and poor response to levodopa.119 Aharon-
Peretz et al further noted younger onset in carriers than in
noncarriers,120 bringing the GBA gene under investigation as
a possible genetic risk factor for PD.

Mechanism of Pathogenicity
GBA encodes the lysosomal enzyme glucocerebrosidase
(GCase), which cleaves the β-glucosyl linkage of glucosyl-
ceramide and glucosylsphingosine. Given the low pene-
trance of PD, both gain-of-function and loss-of-function
mechanisms have been proposed. Proposed gain-of-func-
tion mechanisms include facilitation of α � synuclein accu-
mulation by misfolded GCase or lysosomal dysfunction
causing impairment in the ubiquitin-proteasome or au-
tophagy pathways. Possible loss-of-function mechanisms
include substrate accumulation due to lysosomal dysfunc-
tion or altered lipid maintenance.121 Alcalay et al compared
GCase activity in PD patients and controls with and without
GBA mutations. Homozygotes and compound heterozygotes
had lower enzymatic activity than heterozygotes, who in
turn had lower activity than controls. PD patients as a group
had lower mean GCase activity than the non-PD group.
Further, among noncarriers with PD, lower GCase activity
has been associated with shorter disease duration, suggest-
ing lower GCase activity may be associated with faster
progression.122

Frequency
Multiple studies have established a significantly increased
risk of PD associated with GBA mutation, now reported
worldwide,120,123–128 but most substantially in the AJ popu-
lation.129 In the AJ population,mutations inGBA are common
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among controls. In a large population study, Gan-Or et al
found a mutation frequency of 6.35% among young controls
(ages 20–45 years) and 4.2% among elderly controls.129

Penetrance is incomplete and increases with age. It is esti-
mated at 7.7 to 29.7% by 80 years.130,131 Further, the con-
ferred risk for PDmay increasewith functional severity of the
GBA mutation. Gan-Or et al found an increased risk for PD
conferred with functionally severe versus mild mutations, in
keeping with a prior study.127,132

Phenotype
Overall, the motor phenotype is similar between GBA PD and
iPD,120 possibly with more bradykinesia and LID among GBA
PDpatients.125 In contrast, nonmotor symptoms appear to be
more prominent among GBA PD patients than in iPD. One of
the largest population studies noted GBA PD patients were
more likely than iPD patients to have atypical features
including cognitive changes.128 Greater cognitive involve-
ment has been substantiated in subsequent studies,133 with
Oeda et al also noting possible earlier onset in a retrospective
review.134 Particular impairments in memory and visuospa-
tial domains have been reported.135 In addition, neuropsy-
chiatric disturbances and autonomic dysfunction may be
more severe.136 GBA mutations have been associated with
confirmed idiopathic RBD as well as probable RBD among PD
patients.137 Olfaction appears comparably affected as in
iPD.135

As was originally reported, the disease course appears to
be more rapidly progressive than in iPD. In a longitudinal
study of PD patients with and without GBA mutation,
Brockmann et al found a more rapid progression of motor
as well as cognitive impairment, with decreased survival
rates in GBA PD over a 3-year follow-up.133 Cilia et al also
found a decreased survival rate for GBA PD versus iPD
patients.138 Deep brain stimulation may be required earlier
in GBA PD, but has also been associated with early cognitive
impairment after DBS96; further studies are needed.

Biallelic carriers may have more severe disease. Thaler
et al recently reported a gene dosage effect, with earlier
disease onset and more severe motor and nonmotor
symptoms (i.e., cognition, olfaction, RBD, hallucinations) in
homozygotes and compound heterozygotes versus both
heterozygotes and iPD patients.139

Pathology
In parallel with GBA PD’s prominent cognitive features,
cortical LBs have been noted on postmortem examination,
although it remains unclear whether they occur with
greater burden than in iPD. Clark et al found GBA mutation
status to be associated with cortical LBs and not with
Alzheimer’s disease pathology.140 In the postmortem ex-
amination of 17 GBA PD patients, Neumann et al found
widespread, abundant LBs in all, with limbic or diffuse
neocortical LB pathology,126 although with neocortical bur-
den ultimately felt to be comparable to noncarriers.141 Co-
localization of mutant GCase with α � synuclein inclusions
has been reported in greater proportions in GBA PD than
non-GBA PD.142

Rare Causes and Risk Factors

Additional genes have been identified as possible causes or risk
factors for PD and atypical parkinsonism. Analyses of ADPD
families initially identified CHCHD2, TMEM230, and RIC3 as
causative genes. Multiple mutations in CHCHD2 have been
implicated among Chinese, Japanese, and European PD pa-
tients,143–145 but not consistently supported in case-control
studies146–148; recent meta-analyses suggest the P2L mutation
is associated with increased PD risk among Asian popula-
tions.149,150 TMEM230 was reported in a North American
ADPD family,151 but has not been replicated in recent case-
control studies and requires further validation.152,153 RIC3was
recently reported in an Indian ADPD family, but currently lacks
validation.154Possible rare risk factors include SMPD1,which, in
a biallelic state, causes Niemann-Pick disease type A or B, but is
also associated with an increased risk of PD.155–158 Additional
studies are required forDNAJC13, specific variants ofwhichmay
be associated with increased PD risk.159Mutations in GCH1 are
associated with dopa-responsive dystonia; in addition, reports
including postmortemexamination suggest an increased riskof
parkinsonism with LB pathology among patients with dopa-
responsive dystonia160 in association with progressive supra-
nuclear palsy-like pathology in one proven GCH1 patient.161

22q11.2 deletion causes CATCH22 syndrome, but is also associ-
ated with an increased risk for atypical parkinsonism162 with
supporting LB pathology on postmortem examination.163

Various genes have been associated with atypical parkin-
sonism. These include DNAJC6, associated with early-onset
parkinsonism, mental retardation, hallucinations, pyramidal
tract signs, and epilepsy164–167; ATP13A2,168,169 associated
with Kufor-Rakeb syndrome, characterized by early-onset,
rapidly progressive parkinsonism with supranuclear gaze
palsy, spasticity, and dementia; VPS13C,170 associated with
early-onset, rapidly progressive parkinsonism with early
cognitive decline; SYNJ1,171 associated with early-onset par-
kinsonism with dystonia as well as supranuclear gaze palsy,
dementia, and seizures; FBXO7,172,173 associated with early-
onset parkinsonism with pyramidal tract signs; PLA2G6,174

associated with dystonia parkinsonism; and RAB39B,175–177

associated with early-onset parkinsonism with childhood
intellectual disability. Associationwith PD currently remains
unclear as these genes are largely lacking postmortem
examination to confirm or refute LB pathology.

Conclusion

One of the greatest advances in PD research in the past two
decades is our better understanding of PD genetics. The
wealth of genetic research helps confirm the clinical obser-
vation that PD is not a single disease with a single pathogen-
esis and natural course. However, much of the genetics of PD
remains to be uncovered. Mutations in the genes outlined
above and summarized in ►Table 1 are present only in a
small minority of people with PD; the cause of PD in most
cases remains to be discovered. Also, despite extensive work,
themechanisms bywhichmutations in these genes cause PD
remain largely unknown.
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To date, most of the genetic research in PD has been
observational. Studies have described the prevalence, phe-
notype, and clinical course of mutation carriers. Among the
currently known genetic causes and risk factors, the clinical
phenotype, including the manifestation of motor and non-
motor symptoms, and the rate of progression vary widely;
these characteristics should be considerations in individual
clinical management.

Our hope is that the genetic information may ultimately
lead to new therapeutic interventions manipulating the met-
abolic pathways of the involved genes. In cases of loss of
function (e.g., Parkin), interventions would aim to enhance
the pathway and in cases of gain of function (e.g., LRRK2), to
inhibit activity. Whether mutation carriers, or ideally the
entire PD population, would benefit from such interventions
remains to be explored.
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