Synlett 2017; 28(19): 2517-2524
DOI: 10.1055/s-0036-1590979
synpacts
© Georg Thieme Verlag Stuttgart · New York

New Strategy for Forging Contiguous Quaternary Carbon Centers via H2O2-Mediated Ring Contraction

Jiadong Hu
a   Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. of China   Email: xiewq@nwafu.edu.cn
,
Xin Yu
b   Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, P. R. of China
,
a   Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. of China   Email: xiewq@nwafu.edu.cn
c   Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (grants. 21722206, 21672171, 21372239), the Scientific Research Foundation of Northwest A&F University (grants. Z111021501, Z109021600). Financial support from the Open Fund of State Key Laboratory of Bioorganic & Natural Products is also acknowledged.
Further Information

Publication History

Received: 25 July 2017

Accepted after revision: 24 August 2017

Publication Date:
12 September 2017 (online)


Abstract

Stereospecific construction of contiguous quaternary carbon centers constitutes a major challenge in natural product synthesis. A general protocol that enables stereospecific construction of all stereoisomers of such a moiety remains elusive. In this article, we will discuss the oxidative ring contraction of all-substituted cyclic α-formyl ketones mediated by H2O2, which provides a facile access to the stereospecific construction of contiguous quaternary carbon centers.

 
  • References

    • 1a Kubo M. Okada C. Huang J.-M. Harada K. Hioki H. Fukuyama Y. Org. Lett. 2009; 11: 5190
    • 1b Massiot G. Thepenier P. Jacquier MJ. Le Men-Olivier L. Delaude C. Heterocycles 1989; 29: 1435
    • 2a Li SH. Wang J. Niu XM. Shen YH. Zhang HJ. Sun HD. Li ML. Tian QE. Lu Y. Cao P. Zheng QT. Org. Lett. 2004; 6: 4327
    • 2b Goto K. Tomita M. Okamoto Y. Kikuchi T. Osaki K. Nishikawa M. Kamiya K. Sasaki Y. Matoba K. Proc. Jpn. Acad. 1967; 43: 499
    • 3a Numata A. Takahashi C. Ito Y. Takada T. Kawai K. Usami Y. Matsumura E. Imachi M. Ito T. Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
    • 3b Hayashi H. Matsumoto H. Akiyama K. Biosci., Biotechnol., Biochem. 2004; 68: 753
    • 3c Jadulco R. Edrada RA. Ebel R. Berg A. Schaumann K. Wray V. Steube K. Proksch P. J. Nat. Prod. 2004; 67: 78
    • 3d Dalsgaard PW. Blunt JW. Munro MH. G. Frisvad JC. Christophersen C. J. Nat. Prod. 2005; 68: 258
    • 3e Verbitski SM. Mayne CL. Davis RA. Concepcion GP. Ireland CM. J. Org. Chem. 2002; 67: 7124
    • 3f Dumdei EJ. Kubanek J. Coleman JE. Pika J. Andersen RJ. Steiner JR. Clardy J. Can. J. Chem. 1997; 75: 773
    • 3g Akihiko M. Shunji Y. Mitsuru N. Shûichi H. Chem. Lett. 1982; 11: 463
    • 3h Matsuo A. Yuki S. Nakayama M. J. Chem. Soc., Perkin Trans. 1 1986; 701
    • 4a Peterson EA. Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11943
    • 4b Steven A. Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
    • 4c Long R. Huang J. Gong JX. Yang Z. Nat. Prod. Rep. 2015; 32: 1584
    • 4d Büschleb M. Dorich S. Hanessian S. Tao D. Schenthal KB. Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
    • 5a Zi W. Xie W. Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 5b Teng MX. Zi WW. Ma DW. Angew. Chem. Int. Ed. 2014; 53: 1814
  • 6 Wu H. Xue F. Xiao X. Qin Y. J. Am. Chem. Soc. 2010; 132: 14052

    • For selected reviews, see:
    • 7a Martín Castro AM. Chem. Rev. 2004; 104: 2939
    • 7b Ilardi EA. Stivala CE. Zakarian A. Chem. Soc. Rev. 2009; 38: 3133

    • For selected examples, see:
    • 7c Gu Z. Herrmann AT. Stivala CE. Zakarian A. Synlett 2010; 1717
    • 7d Shimizu Y. Shi S.-L. Usuda H. Kanai M. Shibasaki M. Angew. Chem. Int. Ed. 2010; 49: 1103
    • 7e Trost BM. Cramer N. Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 7f Trost BM. Malhotra S. Chan WH. J. Am. Chem. Soc. 2011; 133: 7328
    • 7g Trost BM. Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176
    • 7h Khan A. Yang L. Xu J. Jin LY. Zhang YJ. Angew. Chem. Int. Ed. 2014; 53: 11257
    • 7i Ohmatsu K. Imagawa N. Ooi T. Nat. Chem. 2014; 6: 47
  • 8 Barton DH. R. Charpiot B. Ingold KU. Johnston LJ. Motherwell WB. Scaiano JC. Stanforth S. J. Am. Chem. Soc. 1985; 107: 3607
    • 9a The Chemistry of Metal Enolates . Vol. 2. Zabicky J. John Wiley and Sons; Chichester: 2009
    • 9b Modern Enolate Chemistry: From Preparation to Applications in Asymmetric Synthesis. Braun M. Wiley-VCH; Weinheim: 2015
    • 9c Fehr C. Angew. Chem., Int. Ed. Engl. 1996; 35: 2567
    • 9d Braun M. Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
    • 9e Gaunt MJ. Johansson CC. C. Chem. Rev. 2007; 107: 5596
    • 9f Morrill LC. Smith AD. Chem. Soc. Rev. 2014; 43: 6214
    • 10a Choi T. Cizmeciyan D. Khan SI. Garcia-Garibay MA. J. Am. Chem. Soc. 1995; 117: 12893
    • 10b Choi T. Peterfy K. Khan SI. Garcia-Garibay MA. J. Am. Chem. Soc. 1996; 118: 12477
    • 10c Peterfy K. Garcia-Garibay MA. J. Am. Chem. Soc. 1998; 120: 4540
    • 10d Mortko CJ. Garcia-Garibay MA. J. Am. Chem. Soc. 2005; 127: 7994
    • 10e Hernandez-Linares MG. Guerrero-Luna G. Perez-Estrada S. Ellison M. Ortin MM. Garcia-Garibay MA. J. Am. Chem. Soc. 2015; 137: 1679
  • 11 Xie WQ. Wang HX. Fan F. Tian JS. Zuo ZW. Zi WW. Gao K. Ma DW. Tetrahedron Lett. 2013; 54: 4392
  • 12 Yu X. Hu J. Shen Z. Zhang H. Gao J.-M. Xie W. Angew. Chem. Int. Ed. 2017; 56: 350
    • 13a Friess SL. Soloway AH. J. Am. Chem. Soc. 1951; 73: 3968
    • 13b Hawthorne MF. Emmons WD. J. Am. Chem. Soc. 1958; 80: 6398
    • 13c Ogata Y. Sawaki Y. J. Org. Chem. 1969; 34: 3985
    • 13d Palmer BW. Fry A. J. Am. Chem. Soc. 1970; 92: 2580
    • 13e Ogata Y. Sawaki Y. J. Am. Chem. Soc. 1972; 94: 4189
    • 13f Winnik MA. Stoute V. Can. J. Chem. 1973; 51: 2788
    • 13g Winnik MA. Stoute V. Fitzgerald P. J. Am. Chem. Soc. 1974; 96: 1977
    • 13h Itoh Y. Yamanaka M. Mikami K. J. Org. Chem. 2013; 78: 146
  • 14 Yu X. Liu Z. Xia Z. Shen Z. Pan X. Zhang H. Xie W. RSC Adv. 2014; 4: 53397
  • 15 Payne GB. J. Org. Chem. 1961; 26: 4793
    • 16a Galteri M. Lewis P. Middleton S. Stock L. Aust. J. Chem. 1980; 33: 101
    • 16b Middleton S. Stock L. Aust. J. Chem. 1980; 33: 2467
    • 17a Mohr JT. Behenna DC. Harned AM. Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 17b Trost BM. Xu J. Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 17c Shen Z. Pan X. Lai Y. Hu J. Wan X. Li X. Zhang H. Xie W. Chem. Sci. 2015; 6: 6986
    • 18a Dowd P. Choi S.-C. Tetrahedron 1989; 45: 77
    • 18b Cocker W. Gordon RL. Shannon PV. R. J. Chem. Res., Synop. 1985; 6: 172