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Abstract A library of N1-arylated 5-phenyl-1,3-dihydro-2H-1,4-benzo-
diazepin-2-ones has been synthesized starting with unsymmetrical dia-
ryliodonium salts using aqueous ammonia as a base. This can also be
applied to a similar 1,3,4-benzotriazepin-2-one derivative.
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Compounds containing a 1,4-benzodiazepine scaffold
are often termed as ‘privileged structures’ and are of signif-
icant interest to organic and medicinal chemists.1–18 Many
bioactive 1,4- benzodiazepines include N-arylated benzodi-
azepines; for example, the benzodiazepine derivative A
(Figure 1) is a bradykinin antagonist19 and the related ben-
zotriazepine B is an antagonist at the parathyroid hormone
(PTH)-1 receptor.20 Typically N-arylated benzodiazepines
can be prepared by transition-metal- catalysed couplings,
often with copper, with various arylating agents. Generally,
the reaction scope is limited with these routes and often re-
quires high temperatures and strong bases. 19,21–23

Being able to generate libraries of diverse analogues, in
this case by adding N-functionality to a privileged core unit,
using mild and efficient methodologies, can substantially
improve SAR studies (structure–activity relationship) and
optimise the drug development process potentially repur-
posing privileged scaffolds for new biological targets.24,25

We have an active interest in benzodiazepines 26,27 and
recently reported a method to functionalise 5-phenyl-1,3-
dihydro-2H-1,4-benzodiazepin-2-ones via a late-stage pal-
ladacycle assisted ortho C–H activation protocol.28,29 Herein
we present our approach to generate a series of N1-arylated
1,4-benzodiazepines using diaryliodonium salts. The latter
react with nucleophiles in the absence of transition-metal
catalysts and are commonly used in organic synthesis as
electrophilic reagents.30–35

Novak et al. recently reported a protocol for the N-aryla-
tion of pyrazoles.36 A quick screen of conditions, adapting
this protocol using diaryliodonium salts with weak bases
under mild conditions, showed that it was indeed possible
to perform similar arylations on the 1,4-benzodiazepine
system. Upon initial screening of a number of solvents, 1,2-
dichloroethane (DCE) was found to give the best results (Ta-
ble 1, entry 2). Solvents such as polypropylene glycol (PEG)
and acetic acid (AcOH) gave poor yields. Similar results
were observed on pyrazoles by Novak et al. where aprotic
solvents, immiscible in water, produced the best results.

A number of bases were tested subsequently and both
NH3 (25% w/w) and NaOH (sat. aq.) gave similar and the best
results (Table 2, entries 1, 2).

Hence, optimal conditions appeared to use NH3 (aq.),
DCE at room temperature for 30 min. Next, a series of func-
tionalized 1,4-benzodiazepines was N-arylated using (4-ni-
trophenyl)phenyliodonium triflate in good to excellent
yields (Scheme 1). Generally, in transition-metal-free pro-
cesses unsymmetrical diaryliodonium salts give a mixture
of products where both groups are transferred and the
transfer of more sterically hindered and electron-with-

Figure 1  Bioactive N-arylated Benzodiazepine and Benzotriazepine
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drawing groups is preferable.34 However, in this case
(Scheme 1) only the nitrophenyl group was transferred. We
were able to N-arylate quite sterically hindered benzodiaze-
pines such as 3e, 3f, and 3g. Of note, 3e is a key intermedi-

ate towards A. We were also pleased to be able to conduct
N-arylation on a previously ortho-arylated hindered benzo-
diazepine, 3h, in good yield, whose structure was also con-
firmed by X-ray crystallography. Such molecules may be
useful precursors to, e.g., α-helical mimetics in medicinal
chemistry.37,38

Table 1  Optimization of N-Arylation of 1,4-Benzodiazepines – Solvent 
Effects

Entry Solvent Conversion (%)a

1 toluene 95

2 DCE 99

3 PEG –

4 AcOH –

5 CHCl3 85
a LC–MS conversion.
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Scheme 1  N-Arylated 1,4-Benzodiazepines

Table 2  Optimization of N-Arylation of 1,4-Benzodiazepines – Base 
Effects

Entry Base Conversion (%)a

1 NaOH (sat. aq.) 99

2 NH3 (25% w/w) 99

3 K2CO3 80

4 NaH -
a LC–MS conversion.

H
N

N

O

base
DCE, rt, 30 min

I+Ph

OTf–

O2N
N

N

O

O2N
Georg Thieme Verlag  Stuttgart · New York — Synlett 2018, 29, 193–198



195

R. Khan et al. LetterSyn  lett
The use of other unsymmetrical diaryliodonium tri-
flates was also explored (Table 3), which required longer re-
action time and led to both aryl groups being transferred to
obtain 3i–l. As expected, the transfer of more sterically hin-
dered or less electron-rich groups was preferred. Further at-
tempts to use unsymmetrical diaryliodonium salts such as
phenyl(3-methylphenyl)iodonium triflate, phenyl(4-meth-
ylphenyl)iodonium triflate, and (2-methylphenyl)(2,4,6-
trimethylphenyl)iodonium triflate gave little or no prod-
ucts. Additionally, attempted N-arylation with symmetrical
diaryliodonium triflates or tetrafluoroborates such as bis(2-
fluorophenyl)iodonium tetrafluoroborate and bis(4-bro-
mophenyl)iodonium triftlate gave, at best, traces of prod-
ucts.

Table 3  Further N-Arylation of 1,4-Benzodiazepinesa

We have briefly explored the N-arylation on a 1,3,4-
benzotriazepine 6, which resulted in diarylation and yield-
ed 7 (Scheme 2).

Scheme 2  N-Arylation on a 1,3,4-Benzotriazepine

Interestingly, the iodonium salts were observed to un-
dergo reaction with water present in the reaction to give di-
arylether products. The ether product is only observed in
substantial amounts when the benzodiazepine substrates
react poorly with the diaryliodonium salts (Table 4). The
ether product 10 was also obtained merely by stirring the
iodonium salt with water in DCE with a mild base for 20
min at room temperature with a yield of 43%. Olofsson et al.
have reported the synthesis of related diarylethers by react-
ing diaryliodonium salts with phenols in the presence of
mild bases.39

Table 4  Diaryl Ether Formation

In summary we have presented a mild metal-free route
to N-arylated benzodiazepines, three of which were struc-
turally characterized in the solid state (3a, 3h, 3i).40,41
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General Procedure
To a stirred solution of the appropriate 1,4-benzodiazepine or
1,3,4-benzotriazepine (0.030–1.00 mmol, 1 equiv) and dia-
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reaction mixture was stirred for 30 min (unless stated other-
Georg Thieme Verlag  Stuttgart · New York — Synlett 2018, 29, 193–198



197

R. Khan et al. LetterSyn  lett
wise). Upon completion, the reaction mixture was diluted with
dichloromethane (3 × 15 mL), and the layers were separated.
Combined organic layers were dried (MgSO4), concentrated
under reduced pressure, and purified by column chromatogra-
phy, hexane/ethyl acetate (80:20 to 30:70).
1-(4-Nitrophenyl)-5-methyl-1,3-dihydro-2H-1,4-benzodiaz-
epin-2-one (3a)
The product was obtained as white solid (0.60 mmol scale, 170
mg, 96%). 1H NMR (500 MHz, CDCl3): δ = 8.27–8.21 (m, ArH, 2
H), 7.62 (dd, 3JHH = 7.5, 1.5 Hz, ArH, 1 H), 7.40–7.35 (m, ArH, 3
H), 7.34–7.29 (m, ArH, 1 H), 6.82 (d, 3JHH = 8.0 Hz, ArH, 1 H), 4.70
(d, 2JHH = 10.5 Hz, COCH2, 1 H), 3.83 (d, 2JHH = 10.5 Hz, COCH2, 1
H), 2.62 (s, CH3, 3 H). 13C NMR (126 MHz, CDCl3): δ = 170.1
(C=O), 168.1 (C=N), 146.7 (ArC), 146.0 (ArC), 140.8 (ArC), 131.4
(ArC), 131.3 (ArC), 128.7 (ArC × 2), 127.8 (ArC), 125.9 (ArC),
125.1 (ArC), 124.5 (ArC × 2), 56.6 (COCH2), 25.5 (CH3). ESI-
HRMS: m/z calcd for C16H13N3O3 [+H]+: 296.1030; found:
296.1033. LC–MS purity (UV) = 100%, tR = 8.10 min.
1-(4-Nitrophenyl)-5-(propan-2-yl)-1,3-dihydro-2H-1,4-ben-
zodiazepin-2-one (3b)
The product was obtained as a white solid (0.52 mmol scale,
166 mg, 99%). 1H NMR (500 MHz, CDCl3): δ = 8.27–8.20 (m, ArH,
2 H), 7.59 (dd, 3JHH = 7.5, 2.0 Hz, ArH, 1 H), 7.39–7.35 (m, ArH, 3
H), 7.34–7.30 (m, ArH, 1 H), 6.83 (dd, 3JHH = 8.0, 1.5 Hz, ArH, 1
H), 4.72 (d, 2JHH = 10.5 Hz, COCH2, 1 H), 3.82 (d, 2JHH = 10.5 Hz,
COCH2, 1 H), 3.34–3.25 (m, 1 H), 1.35 (d, 3JHH = 7.0 Hz,
CNCHC2CH6, 3 H), 1.11 (d, 3JHH = 7.0 Hz, CNCHC2CH6, 3 H). 13C
NMR (126 MHz, CDCl3): δ = 176.9 (C=O), 168.7 (C=N), 146.7
(ArC), 145.9 (ArC), 141.5 (ArC), 131.6 (ArC), 130.9 (ArC), 128.3
(ArC × 2), 127.0 (ArC), 126.0 (ArC), 125.0 (ArC), 124.5 (ArC × 2),
56.5 (COCH2), 35.6 (CNCHC2H6), 22.0 (CNCHC2H6), 19.2
(CNCHC2H6). ESI-HRMS: m/z calcd for C18H17N3O3 [+H]+:
324.1270; found: 324.1281. LC–MS purity (UV) = 96 %, tR =
18.73 min.
1-(4-Nitrophenyl)-3-(propan-2-yl)-5-(propan-2-yl)-1,3-
dihydro-2H-1,4-benzodiazepin-2-one (3c)
The product was obtained as white solid (0.25 mmol scale, 91
mg, 99%). 1H NMR (500 MHz) CDCl3: δ = 8.25–8.18 (m, ArH, 2
H), 7.61 (dd, 3JHH = 8.0, 1.5 Hz, ArH, 1H), 7.39–7.24 (m, ArH, 4 H),
6.85 (dd, J = 8.0, 1.5 Hz, ArH, 1 H), 3.27 (hept, 3JHH = 7.0 Hz,
CNCHCH3CH3, 1 H), 3.12 (d, 3JHH = 9.5 Hz, COCHCHC2H6, 1 H),
2.72–2.61 (m, COCHCHC2H6, 1 H), 1.33 (d, 3JHH = 7.0 Hz,
CNCHC2H6, 3 H), 1.07 (d, 3JHH = 7.0 Hz, CNCHC2CH6, 3 H), 1.05–
1.02 (m, COCHCHC2H6, 6 H). 13C NMR (126 MHz, CDCl3): δ =
173.9 (C=O), 168.3 (C=N), 147.4 (ArC), 145.7 (ArC), 141.1 (ArC),
131.9 (ArC), 130.6 (ArC), 128.4 (ArC × 2), 126.8 (ArC), 125.7
(ArC), 125.1 (ArC), 124.4 (ArC × 2), 69.3 (COCHCHC2H6), 35.5
(CNCHCH3CH3), 22.2 (COCHCHC2H6), 21.9 (CNCHC2H6), 20.1,
(CNCHC2H6) 19.3 (COCHCHC2H6), 18.7 (COCHCHC2H6). ESI-
HRMS: m/z calcd for C21H23N3O3 [+H]+: 366.1812; found:
366.1816. LC–MS purity (UV) = 95%, tR = 23.47 min.
1-(4-Nitrophenyl)-5-phenyl-1,3-dihydro-2H-1,4-benzodiaz-
epin-2-one (3d)
The product was obtained as white solid (0.60 mmol scale, 176
mg, 82%). 1H NMR (500 MHz, CDCl3): δ = 8.30–8.23 (m, ArH, 2
H), 7.77–7.71 (m, ArH, 2 H), 7.55–7.51 (m, ArH, 1 H), 7.49–7.45
(m, ArH, 3 H), 7.45–7.41 (m, ArH, 3 H), 7.29 (d, 3JHH = 8.0 Hz,
ArH, 1 H), 6.94 (d, 3JHH = 8.0 Hz, ArH, 1 H), 4.96 (d, 2JHH = 10.5 Hz,
COCH2, 1 H), 4.03 (d, 2JHH = 10.5 Hz, COCH2, 1 H). 13C NMR (126
MHz, CDCl3): δ = 170.3 (C=O), 168.3 (C=N), 146.7 (ArC), 146.0
(ArC), 142.7 (ArC), 138.4 (ArC), 131.4 (ArC), 130.8 (ArC), 130.4
(ArC), 130.3 (ArC), 129.4 (ArC × 2), 128.5 (ArC × 2), 128.4 (ArC ×
2), 125.4 (ArC), 125.0 (ArC), 124.5 (ArC × 2), 57.4 (COCH2). ESI-

HRMS: m/z calcd for C21H15N3O3 [+H]+: 358.1186; found:
358.1187. LC–MS purity (UV) = 95%, tR = 18.35 min.
1-(4-Nitrophenyl)-3-benzyl-5-phenyl-1,3-dihydro-2H-1,4-
benzodiazepin-2-one (3e)
The product was obtained as white solid (0.40 mmol scale, 140
mg, 78%). 1H NMR (500 MHz, CDCl3): δ = 8.27–8.21 (m, ArH, 2
H), 7.67 (d, 3JHH = 7.5 Hz, ArH, 2 H), 7.52–7.48 (m, 1 H), 7.47–
7.43 (m, ArH, 2 H), 7.41–7.37 (m, ArH, 5 H), 7.36–7.30 (m, ArH, 3
H), 7.25–7.21 (m, ArH, 2 H), 6.90 (d, 3JHH = 8.0 Hz, ArH, 1 H), 4.01
(dd, J = 7.5, 6.0 Hz, COCHCH2, 1 H), 3.68 (dd, 2,3JHH = 14.0, 6.0 Hz,
COCHCH2, 1 H), 3.62 (dd, 2,3JHH = 14.0, 7.5 Hz, COCHCH2, 1 H). 13C
NMR (126 MHz, CDCl3): δ = 168.8 (C=O), 168.5 (C=N), 147.1
(ArC), 145.9 (ArC), 142.1 (ArC), 138.9 (ArC), 138.4 (ArC), 131.5
(ArC), 130.8 (ArC), 130.5 (ArC), 130.3 (ArC), 130.0 (ArC × 2),
129.5 (ArC × 2), 128.6 (ArC × 2), 128.5 (ArC × 2), 128.3 (ArC × 2),
126.3 (ArC), 125.3 (ArC), 125.1 (ArC), 124.5 (ArC × 2), 65.6
(COCHCH2), 37.9 (COCHCH2). ESI-HRMS: m/z calcd for
C28H21N3O3 [+H]+: 448.1656; found: 448.1669. LC–MS purity
(UV) = 99 %, tR = 20.81 min.
7-Chloro-1-(4-nitrophenyl)-3-benzyl-5-phenyl-1,3-dihydro-
2H-1,4-benzodiazepin-2-one (3f)
The product was obtained as white solid (0.15 mmol scale, 54
mg, 75%). 1H NMR (500 MHz, CDCl3): δ = 8.26 (d, 3JHH = 8.5 Hz,
ArH, 2 H), 7.66 (d, 3JHH = 7.5 Hz, ArH, 2 H), 7.57–7.50 (m, ArH, 1
H), 7.51–7.44 (m, ArH, 2 H), 7.42–7.36 (m, ArH, 3 H), 7.34–7.30
(m, ArH, 2 H), 7.26 (s, ArH, 3 H), 7.17 (d, J = 8.7 Hz, ArH, 1 H),
6.85 (d, 3JHH = 8.5 Hz, ArH, 1 H), 3.99 (dd, J = 7.5, 6.0 Hz,
COCHCH2, 1 H), 3.70–3.57 (m, COCHCH2, 2 H). 13C NMR (126
MHz, CDCl3): δ = 168.4, (C=O), 167.2 (C=N), 146.6 (ArC), 146.1
(ArC), 140.6 (ArC), 138.6 (ArC), 137.7 (ArC), 131.7 (ArC), 131.1
(ArC), 129.9 (ArC × 2), 129.8 (ArC), 129.5 (ArC × 2), 128.7 (ArC ×
2), 128.6 (ArC × 2), 128.3 (ArC × 2), 126.5 (ArC), 126.4 (ArC),
126.2 (ArC), 124.6 (ArC × 2), 119.3 (ArC) 65.8 (COCHCH2), 37.9
(COCHCH2). ESI-HRMS: m/z calcd for C28H20ClN3O3 [+H]+:
482.1266; found: 482.1286. LC–MS purity (UV) = 95%, tR = 19.71
min.
1-(4-Nitrophenyl)-3-benzyl-5-(pyridine-2-yl)-1,3-dihydro-
2H-1,4-benzodiazepin-2-one (3g)
The product was obtained as white solid (0.11 mmol scale, 38
mg, 77%). 1H NMR (500 MHz, CDCl3): δ = 8.67–8.62 (m, ArH, 1
H), 8.15 (d, 3JHH = 8.0 Hz, ArH, 2 H), 8.18–8.12 (m, ArH, 1 H),
7.88–7.81 (m, ArH, 1 H), 7.44–7.42 (m, ArH, 2 H), 7.42–7.37 (m,
ArH, 4 H), 7.35–7.26 (m, ArH, 3 H), 7.25–7.21 (m, ArH, 2 H), 6.89
(d, 3JHH = 8.0 Hz, ArH, 1 H), 4.10 (dd, 3JHH = 8.0, 6.0 Hz, COCHCH2,
1 H), 3.70 (dd, 2,3JHH = 14.0, 7.0 Hz, COCHCH2, 1 H), 3.62 (dd, 2,3JHH
= 14.0, 7.5 Hz, COCHCH2, 1 H). 13C NMR (126 MHz, CDCl3): δ =
168.6 (C=O), 167.6 (C=N), 155.9 (ArC), 148.7 (ArC), 147.1 (ArC),
145.9 (ArC), 141.9 (ArC), 138.9 (ArC), 136.8 (ArC), 131.4 (ArC),
130.8 (ArC), 129.9 (ArC × 2), 128.8 (ArC × 2), 128.3 (ArC × 2),
126.3 (ArC), 125.2 (ArC), 125.1 (ArC), 124.8 (ArC × 2), 124.4 (ArC
× 2), 123.8 (ArC), 65.8 (COCHCH2), 37.8 (COCHCH2). ESI-HRMS:
m/z calcd for C27H20N4O3 [+H]+: 449.1608; found: 449.1617. LC–
MS purity (UV) = 99%, tR = 20.81 min.
1-(4-Nitrophenyl)-3-benzyl-5-(2′-fluorobiphenyl-2-yl)-1,3-
dihydro-2H-1,4-benzodiazepin-2-one (3h)
The product was obtained as white solid (0.03 mmol scale, 11
mg, 70%). 1H NMR (500 MHz, CDCl3): δ = 8.14 (d, 3JHH = 8.5 Hz,
ArH, 2 H), 7.57–7.52 (m, ArH, 1 H), 7.51–7.45 (m, ArH, 1 H), 7.42
(d, 3JHH = 7.5 Hz, ArH, 1 H), 7.38 (d, 3JHH = 7.5 Hz, ArH, 1 H), 7.32–
7.27 (m, ArH, 7 H), 7.26–7.19 (m, ArH, 2 H), 7.15–7.09 (m, ArH, 1
H), 7.06 (d, 3JHH = 7.5 Hz, ArH, 1 H), 7.00–6.93 (m, ArH, 3 H), 6.65
(d, 3JHH = 8.5 Hz, ArH, 1 H), 3.80 (dd, 3JHH = 8.0, 5.5 Hz, COCHCH2,
1 H), 3.69 (d, 3JHH = 8.0 Hz, COCHCH2, 1 H), 3.66 (d, 3JHH = 8.0 Hz,
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COCHCH2, 1 H). 13C NMR (126 MHz, CDCl3): δ = 169.5 (C=O),
167.9 (C=N), 159.2 (d, 1JFC = 247.5 Hz, ArC) 147.1 (ArC), 145.7
(ArC), 141.5 (ArC), 138.8 (ArC), 138.7 (ArC), 135.7 (ArC), 132.0 (d,
3JFC = 3.5 Hz, ArC), 131.6 (ArC), 131.4 (ArC), 130.8 (ArC), 130.3
(ArC), 129.9 (ArC x 2), 129.8 (ArC), 129.5 (ArC), 129.2 (ArC),
128.9 (d, 3JFC = 8.0 Hz, ArC), 128.5 (ArC × 2), 128.3 (ArC × 2),
128.1 (ArC), 126.3 (ArC), 125.2 (ArC), 124.8 (ArC), 124.5 (d, 4JFC =
3.5 Hz, ArC), 124.2 (ArC x 2), 115.4 5 (d, 2JFC = 22.0 Hz, ArC) 66.0
(COCHCH2), 37.8 (COCHCH2). ESI-HRMS: m/z calcd for
C34H24N3O3 [+H]+: 542.1874; found: 542.1881. LC–MS purity
(UV) = 93%, tR = 23.27 min.
1-(2,4,6-Trimethylphenyl)-5-phenyl-1,3-dihydro-2H-1,4-
benzodiazepin-2-one (3i)
The reaction was run for 8 h. The product was obtained as white
solid (1.00 mmol scale, 181 mg, 51%). 1H NMR (500 MHz,
DMSO-d6): δ = 7.60–7.57 (m, ArH, 2 H), 7.54–7.46 (m, ArH, 4 H),
7.32 (d, 3JHH = 8.0 Hz, ArH, 1 H), 7.27–7.23 (m, ArH, 1 H), 7.10–
7.07 (m, ArH, 1 H), 6.88 (s, ArH, 1 H), 6.78 (d, 3JHH = 8.0, 1.1 Hz,
ArH, 1 H), 4.70 (d, 2JHH = 10.0 Hz, COCH2,1 H), 4.04 (d, 2JHH = 10.0
Hz, COCH2, 1 H), 2.26 (s, CH3, 3 H), 2.24 (s, CH3, 3 H), 1.61 (s, CH3,
3 H). 13C NMR (126 MHz, DMSO-d6): δ = 170.3 (C=O), 167.5
(C=N), 142.2 (ArC), 138.9 (ArC), 137.9 (ArC), 137.0 (ArC), 136.2
(ArC), 134.7 (ArC), 132.3 (ArC), 130.9 (ArC), 130.0 (ArC × 2),
129.6 (ArC × 2), 129.5 (ArC), 128.9 (ArC × 2), 128.7 (ArC), 124.4
(ArC), 122.1 (ArC), 57.3 (COCH2), 21.0 (CH3), 18.5(CH3), 17.5
(CH3). ESI-HRMS: m/z calcd for C24H22N2O [+H]+: 355.1805;
found: 355.1804. LC–MS purity (UV) = 97%, tR = 21.13 min.
1-(2-Bromophenyl)-5-phenyl-1,3-dihydro-2H-1,4-benzodi-
azepin-2-one (3j)
The reaction was run for 8 h. The product was obtained as white
solid (1.00 mmol scale, 31 mg, 8%). 1H NMR (500 MHz, DMSO-
d6): δ = 7.84 (d, 3JHH = 8.0 Hz, ArH, 1 H), 7.70 (d, 3JHH = 8.0 Hz,
ArH, 1 H), 7.66–7.59 (m, ArH, 4 H), 7.52–7.46 (m, ArH, 3 H),
7.41–7.37 (m, ArH, 1 H), 7.32 (dd, J = 7.8, 1.7 Hz, ArH, 1 H), 7.27
(d, 3JHH = 7.0 Hz, ArH, 1 H), 6.92–6.83 (m, ArH, 1 H), 4.69 (d, 2JHH
= 10.5 Hz, COCH2, 1 H), 4.01 (d, 2JHH = 10.5 Hz, COCH2, 1 H). 13C
NMR (126 MHz, CDCl3): δ = 170.7 (C=O), 168.9 (C=N), 142.0
(ArC), 138.9 (ArC), 138.6 (ArC), 134.3 (ArC), 133.7 (ArC), 132.0
(ArC), 131.0 (ArC), 130.9 (ArC), 130.8 (ArC), 129.9 (ArC × 2),
129.8 (ArC), 129.1 (ArC), 128.8 (ArC × 2), 124.7 (ArC), 123.0
(ArC), 121.5 (ArC), 57.0 (COCH2). ESI-HRMS: m/z calcd for
C21H15BrN2O [+H]+: 391.0441; found: 391.0457. LC–MS purity
(UV) = 93%, tR = 15.23 min.
1-(3′-Trifluoromethylphenyl)-5-phenyl-1,3-dihydro-2H-1,4-
benzodiazepin-2-one (3k)
The reaction was run for 8 h. The product was obtained as white
solid (0.50 mmol scale, 80 mg, 42%). 1H NMR (500 MHz, CDCl3):
δ = 7.72 (d, 3JHH = 7.5 Hz, ArH, 2 H), 7.60–7.55 (m, ArH, 2 H), 7.53
(d, 3JHH = 8.5 Hz, ArH, 2 H), 7.49–7.45 (m, ArH, 2 H), 7.44–7.38
(m, ArH, 3 H), 7.25–7.20 (m, ArH, 1 H), 6.92 (d,3JHH = 8.5 Hz, ArH,
1 H), 4.95 (d, 2JHH = 10.5 Hz, COCH2, 1 H), 4.02 (d, 2JHH = 10.5 Hz,
COCH2, 1 H). 13C NMR (126 MHz, CDCl3): δ = 170.3 (C=O), 168.3

(C=N), 143.1 (ArC), 141.3 (ArC), 138.6 (ArC), 132.0 (q, 2JFC = 29.9
Hz, ArC), 131.9 (ArC), 131.6 (ArC), 131.4 (ArC), 130.7 (ArC), 130.4
(ArC), 129.8 (ArC × 2), 129.5 (ArC), 128.5 (ArC × 2), 125.2 (q, 3JFC =
3.5 Hz, ArC), 124.8 (ArC), 124.8 (ArC), 123.5 (q, 1JFC = 273.0 Hz,
ArC), 124.2 (q, 3JFC = 3.5 Hz, ArC), 57.3 (COCH2). ESI-HRMS: m/z
calcd for C22H15F3N2O [+H]+: 381.1209; found: 381.1208. LC–MS
purity (UV) = 96%, tR = 21.35 min.
1-Phenyl-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-
one (3l)
The reaction was run for 8 h. The product was obtained as white
solid (0.50 mmol scale, 14 mg, 9%). 1H NMR (500 MHz, CDCl3):
δ = 7.72 (d, 3JHH = 7.5 Hz, ArH, 2 H), 7.54–7.49 (m, ArH, 1 H), 7.47
(d, 3JHH = 7.5 Hz, ArH, 2 H), 7.43–7.38 (m, ArH, 2 H), 7.37–7.30
(m, ArH, 2 H), 7.24–7.21 (m, ArH, 3 H), 7.20–7.16 (m, ArH, 1 H),
6.97 (d, 3JHH = 8.5 Hz, ArH, 1 H), 4.96 (d, 2JHH = 10.5 Hz, ArH,
COCH2, 1 H), 4.01 (d, 2JHH = 10.5 Hz, COCH2, 1 H). 13C NMR (126
MHz, CDCl3): δ = 170.7 (C=O), 168.3 (C=N), 146.5 (ArC), 143.3
(ArC), 140.7 (ArC), 138.6 (ArC), 131.3 (ArC), 130.7 (ArC), 130.3
(ArC), 129.6 (ArC × 2), 129.3 (ArC × 2), 128.4 (ArC × 2), 128.3 (ArC
× 2), 127.5 (ArC), 124.7 (ArC), 124.2 (ArC), 57.2 (COCH2). ESI-
HRMS: m/z calcd for C21H16N2O [+H]+: 313.1335; found:
313.1338. LC–MS purity (UV) = 90%, tR = 16.10 min.
1-(4-Nitrophenyl)-3-(4-nitrophenyl)-5-phenyl-1,3-dihydro-
2H-1,4-benzodiazepin-2-one (7)
The product was obtained as white solid (0.60 mmol scale, 2
equiv of diaryliodonium triflate, 146 mg, 51%). 1H NMR (500
MHz, CDCl3): δ = 8.34–8.22 (m, ArH, 4 H), 7.85–7.79 (m, ArH, 2
H), 7.77–7.71 (m, ArH, 2 H), 7.74–7.57 (m, ArH, 3 H), 7.59–7.50
(m, ArH, 3 H), 7.41–7.32 (m, ArH, 2 H), 7.07–7.02 (m, ArH, 1 H).
13C NMR (126 MHz, CDCl3): δ = 166.0 (C=O), 158.3 (C=N), 149.1
(ArC), 146.7 (ArC), 145.6 (ArC), 144.1 (ArC), 143.3 (ArC), 135.0
(ArC), 132.6 (ArC), 131.5 (ArC), 129.9 (ArC), 129.6 (ArC), 129.5
(ArC × 2), 128.9 (ArC × 2), 126.8 (ArC × 2), 126.3 (ArC), 125.4
(ArC) 124.5 (ArC × 2), 124.3 (ArC × 2), 121.3 (ArC × 2). ESI-HRMS:
m/z calcd for C26H17N5O5 [+H]+: 480.1230; found: 480.1245. LC–
MS purity (UV) = 95%, tR = 18.35 min.
1,1′-Oxybis(4-nitrobenzene)
To a solution of (4-nitrophenyl)phenyliodonium triflate (30 mg,
0.06 mmol) in DCE (1 mL) was added sodium hydroxide (aq., 1
mL) and stirred for 20 min at room temperature. Upon comple-
tion, the reaction was diluted with dichloromethane (5 mL × 3)
and the layers were separated. Combined organic layers were
dried (MgSO4) and concentrated under reduced pressure to
afford the product as a white powder (7 mg, 43%). 1H NMR (500
MHz, CDCl3): δ = 8.33–8.27 (m, ArH, 4 H), 7.19–7.14 (m, ArH, 4
H).13C NMR (126 MHz, CDCl3): δ = 160.6 (ArC × 2), 144.2 (ArC ×
2), 126.2 (ArC × 4), 119.3 (ArC × 4). ESI-HRMS: m/z calcd for
C12H8N2O5 [+H]+: 261.0511; found: 261.0513.

(43) CCDC numbers 1560492–1560494 contain the supplementary
crystallographic data for compounds 3a, 3h, 3i. The data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/getstructures.
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