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Dear Readers,

I would like to open this first issue of 2017 on a per
sonal note, taking advantage of the privilege of being  
Editor of SYNFORM for remembering Professor 
Pierfrancesco Bravo, who passed away in November 
2016 at the age of 82. Professor Bravo was an organo-
fluorine chemist who spent most of his scientific career 
at the Italian National Research Council in Milan first, 
and then at Politecnico, always in Milan. Some of you – 
among the ‘less young’ chemists – may remember his 
work on fluorinated sulfoxides, which was still ongo-
ing when I joined his group in 1993. I will always be 
grateful to him for being my PhD supervisor and then 
for generously helping me out through my first career 
phase. When Professor Bravo retired, I took over his 
group for a few years, before moving to Scotland. He 
was an honest and generous man, and a passionate 
researcher and teacher who will always be remembered 
dearly by the many students and co-workers he trained 
in his group. 

This issue and the new year of SYNFORM opens in a 
glittering way with an article on a novel gold(I)-catal-
yzed [2+2+2] cycloaddition reported by A. Echavarren 
(Spain) and continues under similarly noble auspices  
with a palladium-catalyzed arylation of aliphatic alde-
hydes developed by G. Li (P. R. of China). The third 
contribution is all about copper and tin, but believe me –  
the oxidative fluorination leading to aryl fluorides  
developed by J. Murphy (USA) is no less precious than 
the previous two. The final story doesn’t involve any 
noble metal, but the AZADO reagents developed and 
used by Y. Iwabuchi (Japan) to prepare 1,3-cycloalka-
dienes from cycloalkenes are definitely very valuable!!

Enjoy your reading!
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The activation of alkynes towards nucleophilic addition em-
ploying gold salts and complexes has become a powerful and 
versatile tool for the construction of C–C and C–heteroatom 
bonds. In particular, the reaction of alkynes with alkenes has 
been studied extensively, and the intramolecular reactions of 
1,n-enynes has led to the development of novel methods and 
strategies to construct new rings and complex polycycles. In 
this context, the group of Professor Antonio Echavarren at the 
Institute of Chemical Research of Catalonia (ICIQ), Barcelona 
Institute of Science and Technology (Spain) recently reported 
the application of this strategy to a formal [2+2+2] cycloaddi-
tion of oxoenynes, and the preparation of decahydro-4,8- 
epoxyazulene scaffolds.1 “This novel approach provided an ex-
pedient entry into the total synthesis of naturally occurring 
sesquiterpenoids such as (+)-orientalol F2 and (–)-englerin 
A,3” said Professor Echavarren. He continued: “Other natural 
products, including isovelerenol and bakkenolide III featuring 
an octahydro-1H-indene core, may be obtained from suitably 
functionalized oxo-1,5-enynes.”

“Although the formal [2+2+2] cycloaddition of oxo-
1,6-enynes and oxo-1,7-allenenes4 developed in our group  
prov ed to proceed with exquisite diastereoselectivity (sin-

gle diastereomer in most cases), the preliminary results ob - 
tain ed for oxo-1,5-enynes5 demonstrated that the control 
of the diastereoselectivity would be more challenging with  
these sub strates,” explained Professor Echavarren. “There-
fore, we focused our attention on studying the reactivity of 
O-protect ed homopropargylic and allylic oxo-1,5-enynes, 
since these substrates provided two advantages: 1) the pro-
tected alcohol could later be easily derivatized; 2) by con-
trolling the configuration of the stereogenic center (protected 
secondary alcohol), one should be able to control the final 
configuration of the obtained polycycles.”

Professor Echavarren emphasized that similar oxatricyclic 
compounds showed potential as herbicides and may be prepa-
red, from furan derivatives and maleic anhydride, via an ini-
tial Diels–Alder cycloaddition followed by a lengthy synthetic 
sequence.6 “This approach suffers several drawbacks such as 
the limited availability of substituted furans, the forma tion of 
only one diastereomer (no opportunity to prepare the com-
plementary diastereomer via this strategy) and the large  
number of steps to obtain the hexahydro-4,7-epoxyindene 
framework,” said Professor Echavarren. He continued: “Our 
strategy implements a series of improvements: 1) an overall 

Diastereoselective Gold(I)-Catalyzed [2+2+2] Cycloaddition  
of Oxo-1,5-Enynes

Synthesis 2016, 48, 3183–3198

Scheme 1 Mechanism of the formal [2+2+2] cycloaddition of oxo-1,5-enynes, supported by DFT calculations
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shorter synthetic sequence to the final oxatricycles; 2) a late-
stage derivatization (introduction of R2) that allows us to make 
a library of derivatives in an expedient manner; 3) control of 
the relative configuration of the final oxatricycles by selecting 
the geometry of the olefin precursor.”

The proof of concept for this formal cycloaddition was de-
monstrated by treatment of model oxo-1,5-enyne (Z)-1a (R1 = 
Bz, R2 = H) with [JohnPhosAu(NCMe)]SbF6 in dichloromethane 
at room temperature. Although the desired tricycle anti-4a 
was formed in moderate yield, partial decomposition of the 
substrate, presumably through elimination of benzoic acid, 
was observed to a significant extent. Professor Echavarren  
said: “Our extensive screening of conditions allowed us to find 
that this undesired elimination could be almost completely 
suppressed by carrying out the reaction in toluene instead 
of chlorinated solvents and at higher dilution. We found that  
carrying out this transformation in anhydrous solvent and un-
der an inert atmosphere was beneficial and the product was 
formed more cleanly under these conditions.”

Professor Echavarren explained: “Our theoretical study 
of the mechanism of this transformation confirmed our pro - 
pos ed mechanistic picture via a step-wise process (Scheme 1):  
1) The reaction first proceeds through the cycloisomeriza tion 
of the 1,5-enyne in an endo fashion, forming an inter mediate 

that is best represented as a cyclopropyl gold-carbene (endo-
cyclic). According to our calculations and in agreement with 
observations, this step is fully diastereoselective. 2) Two com-
petitive pathways arising from the preferred face for the nu-
cleophilic attack of the carbonyl group are then involved and 
can explain the lack of complete stereoselectivity. Hence, the 
anti-attack of the carbonyl onto the cyclopropyl moiety is  
kinetically more favored than the corresponding attack of the 
carbonyl from the opposite face (syn to the breaking cyclo-
propane C–C bond) on a highly distorted cyclopropyl gold-
carbene (that can be depicted as a gold-stabilized homo allylic 
carbocation). The lack of stereoselectivity in some of our  
examples can be attributed to these competitive processes 
and, presumably, to a lower difference of energy between 
the two corresponding transition states. 3) Subsequent Prins- 
type cyclization (only one possible mode of cyclization in each 
scenario) followed by hydride shift and deauration lead to the 
observed diastereomeric oxatricycles.”

Professor Echavarren continued: “On our model system 
and more generally with Z-configured oxoenynes, the reac-
tion proceeded with high to excellent diastereoselectivity, 
whereas with E-configured oxoenynes, the stereoselectivity 
strongly depended on the size of the substituent at the carbo-
nyl. However, a large protecting group (R1) such as TBS on the 

A4

Scheme 2 Selected scope of the formal [2+2+2] cycloaddition of oxo-1,5-enynes 
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alcohol seemed to override this effect and allowed the forma-
tion of oxatricycles with consistently high diastereoselectivity  
(Scheme 2).”

Although these oxatricycles are not direct derivatives of 
natural products, they constitute intriguing one-carbon-lower 
analogues of the polycyclic skeleton of the aforementioned 
orientalol/englerin family of sesquiterpenoids. For this reason, 
the group is currently evaluating their biological properties.

“Future developments will aim at exploring the reactivity 
of other functionalized oxoenynes as well as developing asym-
metric alternatives, either on enantioenriched sub strates or 
employing a chiral catalyst for the reaction of achiral sub-
strates,” concluded Professor Echavarren.

A5
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In recent years, significant progress on transition-metal-ca-
talyzed site-selective C–H bond activation has been achieved 
by introducing directing groups on substrates.1 However, this 
method has inherent limitations: the process of construction 
of the original substrates and removal of the directing groups 
diminishes the efficiency and/or compatibility of the reac-
tions. Therefore, there is a demand for developing a process 
without installing a directing group. The groups of Professor 
Guigen Li from Nanjing University (P. R. of China) and Profes-
sor Haibo Ge from Indiana University–Purdue University Indi-
anapolis (IUPUI, USA) are aiming to design a specific catalyst 
as a transient directing group that can bind reversibly to the 
substrate and the metal center. Professor Ge said: “Some pre-
vious literature indicates that the reversible imine linkage was 
effective in Rh- or Pd-catalyzed selective C–H bond functiona-
lization reactions.2 Very recently, our group reported the di-

rect palladium-catalyzed γ-arylation of primary alkylamines 
with glyoxylic acid as a transient directing group.3”

He continued: “However, the direct β-functionalization of 
aliphatic aldehydes has not yet been discovered. Based on our 
previous results, we believe that the arylation of unactivated 
β-C–H bonds of aliphatic aldehydes is feasible using metal ca-
talysts by employing appropriate amine compounds as transi-
ent directing groups.”

After extensive investigations, 3-aminopropanoic acid was 
proven to be the most suitable transient directing group in the 
process of Pd-catalyzed arylation of unactivated β-C–H bonds 
of aliphatic aldehydes. “As expected, this reaction exhibited 
excellent functional group compatibility and site-selectivity. 
In the process, functionalization of the unactivated β-C–H 
bonds of methyl groups was favored over the β-methylene, 
γ- or δ-methyl C–H bonds,” said Professor Ge. He continued: 

Catalytic C–H Arylation of Aliphatic Aldehydes Enabled  
by a Transient Ligand

J. Am. Chem. Soc. 2016, 138, 12775–12778

Scheme 1 Selected substrate scope of palladium-catalyzed direct β-arylation of aliphatic aldehydes
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“Moreover, unactivated secondary sp3 carbons could also be 
functionalized (Scheme 1). More importantly, β-arylation of 
n-pentanal could also be accomplished in this catalytic cy-
cle by using 3-amino-3-methylbutanoic acid as the transient  
directing group. Furthermore, the control experiments indi-
cated that dehydrogenation of aliphatic aldehydes was not in-
volved in this process and a [5,6]-bicyclic palladium complex 
might be the intermediate in the catalytic cycle. After a mul-
titude of attempts, the [5,6]-bicyclic palladium complex was 
finally isolated by employing pyridine as an auxiliary ligand, 
and the desired arylated product was also captured from the 
reaction of palladium intermediate with iodobenzene suc-
cessfully (Scheme 2).”

Professor Ge concluded: “We hope that further detailed 
mechanistic studies of this reaction will provide us more in-
sights in developing novel transient directing groups to ex-
tend both the substrate and reaction scopes.”
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A8

Scheme 2 Synthesis of the [5,6]-bicyclic palladium complex and the subsequent arylation reaction
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The importance of fluorinated organic molecules in applica-
tions such as pharmaceuticals, agrochemicals, new materials 
and imaging agents for positron-emission tomography (PET) 
has become well understood within the scientific communi-
ty. While carbon–fluorine bond construction is a challenging 
chemical transformation that, until recently, was limited to 
simple substrates that could tolerate harsh conditions, a re-
markable number of novel synthetic methodologies for C–F 
bond construction has been reported in the past decade.1–3 
Notable improvements in aryl fluoride bond formation have 
involved the use of transition metals to facilitate this transfor-
mation.4–6 While these methods have considerably improved 
the accessibility of fluorinated arenes, many of them require 
the use of electrophilic fluorinating sources (e.g., Selectfluor, 
N-fluoropyridinium salts) which are not useful for applica-
tions in PET, a powerful noninvasive imaging technique that 
can provide information about molecular targets in vivo. The 
positron-emitting radioisotope fluorine-18 (18F) is generated 
as nucleophilic fluoride and thus fluorination methods using 
electrophilic fluorine sources are not broadly useful for PET 
molecular imaging applications.

The group of Professor Jennifer Murphy at the Univer-
sity of California Los Angeles (UCLA, USA) was interested in 
expand ing the methods available for 18F-radiofluorination to-
wards applications in PET and this led them to investi gate oxi-
dative fluorination chemistry. “Oxidative fluorination trans-
formations, which utilize a nucleophilic fluoride source and 
an external oxidant, are conceptually challenging due to the 
fact that fluorine is the most oxidizing element known. Such 
oxidative fluorination transformations have been reported, 
yet they require the synthesis of complex starting materials, 
use of directing groups, long reaction times or a large excess of 
transition metal,7–11” said Professor Murphy, who explained: 
“Our group sought to develop a mild, relatively quick, oxi-
dative fluorination reaction using nucleophilic fluoride and 
synthetically accessible starting materials. Aryl stannanes are 
highly stable and can be readily obtained with a wide range 
of complex functionality, attracting our attention to their use 
over other starting materials. In addition, reports confirming 
reductive elimination of high-valent Cu(III) species initiated 
our interest in evaluating this transition metal to facilitate C–F 
bond formation with nucleophilic fluoride.”

Copper-based methods for C–F bond formation are 
known11,12 and mechanistic studies suggest that copper plays 
a dual role of transition-metal mediator for aryl–F coupling as  
well as the oxidant to access a Cu(III) intermediate, requir ing  
excess copper reagent. “In agreement with the proposed dual 
role of copper, our initial experiments screening the fluo ri na- 
tion of aryl stannanes required upwards of four equivalents 
of copper to obtain moderate yields, which dramatically  
dropped off when less than two equivalents were used,” said 
Professor Murphy. She continued: “We hypothesized that initial  
formation of a Cu(II)(OTf)(F) complex might facilitate the trans - 
metalation more efficiently and tested this hypothesis by 
pre-stirring the fluoride source and copper(II) triflate before  
adding the stannane to the reaction mixture. Gratifyingly, this  
stepwise protocol resulted in significant improvement in yield  
of the aryl fluoride, 70% compared to 46% obtained from single  
addition (Scheme 1). Of note, these effects were more appar-
ent with CsF as the fluoride source, which enabled the reaction 
to proceed with only two equivalents of copper(II) triflate.”

In their evaluation of solvent effects on the reaction, the 
authors of this study found that the presence of acetonitrile  

Copper-Mediated Oxidative Fluorination of Aryl Stannanes  
with Fluoride

Org. Lett. 2016, 18, 4522–4525

Scheme 1 Effects of pre-stir towards oxidative fluorination of 
aryl stannanes (Yields were determined by 19F NMR spectro-
scopy with 1-fluoro-3-nitrobenzene as an internal standard.) 
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was required for efficient fluorination to proceed. The use 
of various other solvents provided no detectable fluorinated 
products; however, when these solvents were spiked with as 
little as 10% acetonitrile, the fluorination proceeded in mode-
rate to good yields.  Professor Murphy remarked: “We hypo-
thesize that acetonitrile plays a key role as a ligand for cop-
per, perhaps to stabilize the copper center to promote rapid 
transmetala tion and to support reductive elimination of the 
arylcopper(III) intermediate. Further evaluation of fluoride 
sources revealed tetrabutylammonium triphenyldifluorosili-
cate (TBAT) gave the highest yields while, in the context of  
alkali metal fluoride sources, CsF gave comparable yields.”

This reaction demonstrates broad compatibility and 
a large functional group tolerance (Scheme 2). Common 
functionality including esters, nitriles, aldehydes, ketones, 
ethers, sulfones and alcohols survive the reaction conditions 
and provide the corresponding arylfluorides in good yields  
(Scheme 2). Notably, arenes bearing protic groups or nucleo-

philic moieties, such as amines or thioethers, also participated 
in fluorination in modest yields. Professor Murphy concluded:  
“Given the versatility of this method, we expect other oxida-
tive fluorination methods such as this one to become more 
prevalent amongst the broad chemistry community. Transla-
tion of this methodology into 18F-radiofluorination for appli-
cations in PET is currently being investigated in our laborato-
ry.”

A11

Scheme 2 Oxidative fluorination of aryl stannanes with Cu(OTf)2 and TBAT.a
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Cyclic 1,3-dienes or 1,3-cycloalkadienes are important chem-
icals that have a variety of synthetic applications in organic 
chemistry, but their preparation – particularly in the case 
of highly functionalized 1,3-cycloalkadienes – can be chal-
lenging, thus affecting the availability of these molecules as 
building blocks. A convenient one-pot synthesis of 1,3-cyclo-
alkadienes via a regioselective dehydrogenation of the cor-
responding cycloalkenes has been developed recently by the 
group of Professor Yoshiharu Iwabuchi from Tohoku Univer-
sity (Japan). Professor Iwabuchi said: “The novel synthetic 
method stemmed from a serendipitous discovery during our 
attempt to expand the synthetic scope of oxoammonium salts. 
After extensive investigations, we realized that this dehydro-
genation involves unprecedented reactivity of oxoammonium 
salts with cycloalkenes: an azaadamantane-type oxoammon-
ium salt reacts with a cycloalkene to form a key N-hy-
droxyammonium intermediate via an N-preferential ene-like 
addition (Scheme 1).” Professor Iwabuchi revealed that PhD 
student Shota Nagasawa discovered the novel reactivity of the 
azaadamantane-type oxoammonium salt, and designed and 
conducted all the experiments covered in their paper as well 
as co-authoring it with Professor Yusuke Sasano and Professor 
Yoshiharu Iwabuchi.

Professor Iwabuchi continued: “Our investigation on the 
development and synthetic use of azaadamantane-N-oxyl 
(AZADO)-related compounds began in 2002 when I took 
over a laboratory from my mentor, Professor Emeritus Kunio 
Ogasawara at Tohoku University.” The Ogasawara group had 
been preparing for publication of the seminal work entitled 
‘The Chiral Modification of Adamantane’.1 “By learning the 

unique synthetic approach which employs an annulation of 
bicyclo[3.3.1]nonane skeleton to adamantane, inspiration 
dawned on the possible use of AZADO and its derivatives as 
a less-hindered congener of TEMPO that would mediate or  
catalyze oxidation of organic substrates,” Professor Iwabuchi 
recalled. He continued: “The catalytic activity and the sub-
strate applicability exhibited by AZADOs in alcohol oxidation 
were far beyond our expectation.2 The discovery of the ultra-
highly active catalyst spurred us to develop a commercial syn-
thesis of AZADO. After productive collaboration with Nissan 
Chemical Industry, Ltd., a kilogram-scale synthesis process 
was established and AZADO (AZADOL®) is now widely distri-
buted by several vendors.3 The large-scale synthetic route to 
AZADO allowed us to enjoy the fertile chemistry of AZADO 
and related compounds: the less-hindered active site offers 
ultra-high activity and tunable redox potential. Either intro-
ducing electronegative substituents onto the azaadamantane 
skeleton4 or coupling with different counter-anions signifi-
cantly expanded the synthetic scope of the method.5” 

Recently, the group’s interests have expanded into re-
actions of AZADOs and related oxoammonium salts with  
alkenes. The reaction of oxoammonium salts with alkenes was 
first reported in 2006 by Bobbitt and co-workers: a TEMPO-
derived oxoammonium salt (Bobbitt’s salt) was found to react 
with trisubstituted alkenes selectively to give alkoxyamines.6 
“This new reaction, featuring the O-preferential ene-like addi-
tion of oxoammonium ion onto alkene, opened a new avenue  
for oxidation of alkenes, however, the substrate scope was  
limited to trisubstituted alkenes,” said Professor Iwabuchi. 
“We envisioned that an electronically tunable AZADO-derived 

Synthesis of 1,3-Cycloalkadienes from Cycloalkenes:  
Unprecedented Reactivity of Oxoammonium Salts

Angew. Chem. Int. Ed. 2016, 55, 13189–13194

Scheme 1 Dehydrogenation of cycloalkenes using an azaadamantane-type oxoammonium salt
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oxoammonium ion would acquire an enhanced electrophilic 
nature that would enable its attack onto disubstituted alkenes  
to give the corresponding adducts. The resulting story is  
described in detail in our Angewandte paper.”

The selected scope of this reaction is shown in Scheme 2. 
“The most outstanding point of this reaction should be the 
complete regioselectivity in the dehydrogenation step,” said 
Professor Iwabuchi. Dibromination–dehydrobromination se-
quence, which is a well-known method to synthesize cyclo-
alka-1,3-dienes from cycloalkenes, often gives a regioisomeric 

mixture of cycloalka-1,3-dienes depending on structures of 
the substrates. In contrast, the Iwabuchi group’s method gives 
cycloalka-1,3-dienes as a single isomer.

Professor Iwabuchi said: “A scalable synthesis of the key 
reagent 4-Cl-AZADO+BF4

– has been developed on the basis of 
the kilogram-scale synthesis of AZADO. It should be stressed 
that 4-Cl-AZADO+BF4

– can be recyclable: the corresponding 
hydroxylamine (4-chloro-2-azaadamantane-2-ol: 4-Cl-
AZADOL) was recovered after the dehydrogenation and was 
converted into 4-Cl-AZADO+BF4

– quantitatively (Scheme 3).”

A14

Scheme 2 Substrate scope (selected)

Scheme 3 Large-scale experiment and regeneration of 4-Cl-AZADO+BF4
–
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Professor Iwabuchi remarked: “We demonstrated the syn-
thetic use of the 1,3-cyclohexadiene products by the synthesis 
of carbasugar derivatives (Scheme 4). Since our method has 
a potential to afford various 1,3-cycloalkadienes (including 
unprecedented ones), various carbasugar derivatives could be 
synthesized.”

Concerning future prospects and developments of this 
work, Professor Iwabuchi said: “In this paper, we reported the 
novel reactivity of oxoammonium species and the preliminary 
results of its applicability. Based on this finding, improvement 
of the efficiency (which includes the development of catalytic 
conditions) and expansion of the scope to other alkene sub-
strates would be possible and are under way in our lab.

Furthermore, 4-Cl-AZADO+BF4
–, the key reagent in this 

reaction, is readily prepared in multigram scale and shows 
improved reactivity compared with previously developed 
oxoammonium salts,” said Professor Iwabuchi. He concluded: 
“We believe that a sufficient supply of this oxoammonium 
salt should allow the research community to develop new 
reactions based on this chemistry, without the risk of mis-
sing opportunities because of difficulties connected with the 
availability of these compounds. Commercialization of 4-Cl-
AZADO+BF4

– is currently being discussed.”
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Scheme 4 Functionalization of the obtained 1,3-cyclohexadienes
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