Synlett 2017; 28(01): 68-72
DOI: 10.1055/s-0036-1589410
cluster
© Georg Thieme Verlag Stuttgart · New York

Potentially Prebiotic Synthesis of α-Amino Thioacids in Water

Luke J. Leman*
Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA   Email: lleman@scripps.edu
,
M. Reza Ghadiri
Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA   Email: lleman@scripps.edu
› Author Affiliations
Further Information

Publication History

Received: 01 August 2016

Accepted after revision: 11 October 2016

Publication Date:
09 November 2016 (online)


Abstract

Although thioacids have been proposed as acylating agents and energy carriers in the context of prebiotic chemical evolution, there has been little exploration of their synthesis in an aqueous, abiotic setting. Here we report that α-amino thioacids are generated from α-amino acids in water in the presence of carbonyl sulfide (COS), a component of volcanic and deep sea vent emissions. Traces of thioacid are formed when amino acids react with COS alone in water, with the required sulfide presumably originating from COS decomposition. Higher yields of thioacid are observed when sulfide ions are added exogenously to the reactions. The proposed mechanism involves activation of the amino acid to an N-carboxyanhydride (NCA) mediated by COS. Our data shows that COS also catalyzes the hydrolysis of α-amino thioacids, so the observed yields are a net of thioacid synthesis and breakdown. Although the NCA has been a topic of research for decades, this is the first report to our knowledge of NCA-mediated thioacid formation in water. These findings broaden the scope of reactions mediated by COS, suggesting a mechanism by which peptide formation, phosphate activation and phosphorylation, and the syntheses of aminoacyl thioacids, could have shared a common pathway on the prebiotic Earth.

 
  • References and Notes

    • 1a Wachtershauser G. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 200
    • 1b Blochl E, Keller M, Wachtershauser G, Stetter KO. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 8117
    • 2a Liu R, Orgel LE. Nature 1997; 389: 52
    • 2b Maurel M.-C, Orgel LE. Orig. Life Evol. Biosph. 2000; 30: 423
    • 2c Zepik HH, Rajamani S, Maurel MC, Deamer D. Orig. Life Evol. Biosph. 2007; 37: 495
  • 3 Cefola M, Peter SS, Gentile PS, Celiano AV. Talanta 1962; 9: 537
  • 4 Wieland T. Sulfur in Biomimetic Peptide Syntheses. In The Roots of Modern Biochemistry. Kleinkauf H, Von Döhren H, Jaenicke L. Walter de Gruyter; Berlin: 1988: 213-221
  • 5 Weber AL. Orig. Life Evol. Biosph. 1998; 28: 259
  • 6 Wieland T, Euler KE. Chem. Ber. 1958; 91: 2305
  • 7 Weissbuch I, Bolbach G, Zepik H, Shavit E, Tang M, Frey J, Jensen TR, Kjaer K, Leiserowitz L, Lahav M. J. Am. Chem. Soc. 2002; 124: 9093
  • 8 Leman L, Orgel L, Ghadiri MR. Science 2004; 306: 283
  • 9 Stueber D, Patterson D, Mayne CL, Orendt AM, Grant DM, Parry RW. Inorg. Chem. 2001; 40: 1902
    • 10a Weber AL, Orgel LE. J. Mol. Evol. 1979; 13: 193
    • 10b Brack A. Orig. Life Evol. Biosph. 1987; 17: 367
    • 10c Brack A. Bio Systems 1982; 15: 201
    • 10d Pascal R, Boiteau L, Commeyras A In Prebiotic Chemistry: from Simple Amphiphiles to Protocell Models . Vol. 259. Springer; Berlin: 2005: 69-122
    • 10e Wieland T, Jaenicke F. Justus Liebigs Ann. Chem. 1956; 599: 125
    • 10f Wieland T, Lambert R, Lang HU, Schramm G. Justus Liebigs Ann. Chem. 1955; 597: 181
    • 10g Wieland T, Euler KE. Chem. Ber. 1958; 91: 2305
  • 11 Potterton E, Briggs P, Turkenburg M, Dodson E. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2003; 59: 1131
    • 12a Kricheldorf HR. Makromol. Chem. 1973; 167: 1
    • 12b Hirschmann R, Dewey RS, Schoenewaldt EF, Joshua H, Paleveda WJ. Jr, Schwam H, Barkemeyer H, Arison BH, Veber DF, Strachan RG, Milkowski J, Denkewalter RG, Hirschmann R. J. Org. Chem. 1971; 36: 49
  • 13 Kricheldorf HR. Chem. Ber. 1971; 104: 3156
  • 14 Leman LJ, Huang Z.-Z, Ghadiri MR. Astrobiology 2015; 15: 709
  • 15 Walker JC. G, Brimblecombe P. Precambrian Res. 1985; 28: 205
  • 16 Chandru K, Gilbert A, Butch C, Aono M, Cleaves HJ. Sci. Rep. 2016; 6: 29883
    • 17a Inn EC. Y, Vedder JF, Condon EP, O’Hara D. Science 1981; 211: 821
    • 17b Rasmussen RA, Khalil MA. K, Dalluge RW, Penkett SA, Jones B. Science 1982; 215: 665
    • 17c Symonds RB, Rose WI, Bluth GJ. S, Gerlach TM. Rev. Mineral. 1994; 30: 1
    • 17d Halmer MM, Schmincke HU, Graf HF. J. Volcanol. Geotherm. Res. 2002; 115: 511
    • 17e United States Environmental Protection Agency, Chemical Summary for Carbonyl Sulfide. https://www.epa.gov/sites/production/files/2016-09/documents/carbonyl-sulfide.pdf (accessed Oct. 18, 2016).
  • 18 Jefferts KB, Penzias AA, Wilson RW, Solomon PM. Astrophys. J. 1971; 168: L111
  • 19 Studier MH, Hayatsu R, Anders E. Science 1965; 149: 1455
  • 20 Ferm RJ. Chem. Rev. 1957; 57: 621
  • 21 Pollack JB, Dalton JB, Grinspoon D, Wattson RB, Freedman R, Crisp D, Allen DA, Bezard B, DeBergh C, Giver LP, Ma Q, Tipping R. Icarus 1993; 103: 1
  • 22 Leman LJ, Orgel LE, Ghadiri MR. J. Am. Chem. Soc. 2006; 128: 20