Synthesis of (R)-Sitagliptin

Significance: The key step in the synthesis of (R)-sitagliptin depicted is an asymmetric Mannich reaction of dithiomalonate \(B \) with bench-stable \(\alpha \)-amidosulfone \(A \) catalyzed by quinidine-derived squaramide catalyst \(C \) (2 mol%). The reaction proceeds at 0 °C under aqueous biphasic conditions to give Mannich adduct \(D \) in 72% yield and 95% ee. A single recrystallization affords \(D \) in >99% ee.

Sixteen examples of the reaction demonstrate its broad scope and utility.

Comment: The superior reactivity of dithiomalonate \(B \) compared with monothiomalonates and malonates as Mannich donors is attributed to the higher acidity of its \(\alpha \)-hydrogen. Under the reaction conditions, the \(\alpha \)-amidosulfone undergoes elimination of sodium benzenesulfinate to an \(N \)-Boc-protected imine which reacts before tautomerization to the enamine can occur. Sitagliptin (Januvia) is a DPP-4 inhibitor that is prescribed for the treatment of type 2 diabetes.