Synlett 2018; 29(04): 419-424
DOI: 10.1055/s-0036-1588506
cluster
© Georg Thieme Verlag Stuttgart · New York

Mild and Efficient Vicinal Dibromination of Olefins Mediated by Aqueous Ammonium Fluoride

Wing Hin Ng
Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, P. R. of China   Email: yyyeung@cuhk.edu.hk
,
Tony K. M. Shing*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, P. R. of China   Email: yyyeung@cuhk.edu.hk
,
Ying-Yeung Yeung*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, P. R. of China   Email: yyyeung@cuhk.edu.hk
› Author Affiliations
We thank the Research Grant Council of the Hong Kong Special Administration Region (RGC Ref. No. CUHK14315716) and The Chinese University of Hong Kong Direct Grant (no. 4053203) for financial support. The equipment was partially supported by the Faculty Strategic Fund for Research from the Faculty of Science of the Chinese University of Hong Kong.
Further Information

Publication History

Received: 17 May 2017

Accepted after revision: 23 June 2017

Publication Date:
08 August 2017 (online)


Published as part of the Cluster Alkene Halofunctionalization

Abstract

A mild and efficient vicinal dibromination of olefins has been developed by using saturated aqueous ammonium fluoride solution as the promoter. Inexpensive and commercially available N-bromosuccinimide (NBS) was used as the brominating reagent. The corresponding vicinal dibromoalkanes could be obtained in good to excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Piou T. Rovis T. J. Am. Chem. Soc. 2014; 136: 11292
  • 2 Ramachary DB. Reddy GS. Peraka S. Gujral J. ChemCatChem 2017; 9: 263
  • 3 Garst JF. Soriaga MP. Coord. Chem. Rev. 2004; 248: 623
  • 4 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
  • 5 Hu B. DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
  • 6 Goudreau N. Brochu C. Cameron DR. Duceppe J.-S. Faucher A.-M. Ferland J.-M. Grand-Maître C. Poirier M. Simoneau B. Tsantrizos YS. J. Org. Chem. 2004; 69: 6185
  • 7 Gröst C. Berg T. Org. Biomol. Chem. 2015; 13: 3866
    • 9a Shibuya GM. Kanady JS. Vanderwal CD. J. Am. Chem. Soc. 2008; 130: 12514
    • 9b Snyder SA. Tang ZY. Gupta R. J. Am. Chem. Soc. 2009; 131: 5744
    • 9c Kanady JS. Nguyen JD. Ziller JW. Vanderwal CD. J. Org. Chem. 2009; 74: 2175
    • 9d Nilewski C. Geisser RW. Carreira EM. Nature 2009; 457: 573
  • 10 Avramoff M. Weiss J. Schäcchter O. J. Org. Chem. 1963; 28: 3256
  • 11 Chaudhuri MK. Khan AT. Patel BK. Tetrahedron Lett. 1998; 39: 8163
  • 12 Tanaka K. Shiraishi R. Toda K. J. Chem. Soc., Perkin Trans. 1 1999; 3069
  • 13 Nakamatsu S. Toyota S. Jones W. Toda F. Chem. Commun. 2005; 3808
  • 14 Shao L.-X. Shi M. Synlett 2006; 1269
  • 15 Hu DX. Shibuya GM. Burns NZ. J. Am. Chem. Soc. 2013; 135: 12960
  • 16 Karki M. Magolan J. J. Org. Chem. 2015; 80: 3701
  • 17 Ho TL. Gupta B. Olah GA. Synthesis 1977; 676
  • 18 Kim KM. Park IH. Synthesis 2004; 2641
  • 19 Nair V. Panicker SB. Augustine A. George TG. Thomas S. Vairamani M. Tetrahedron 2001; 57: 7417
  • 20 Hernández-Torres G. Tan B. Barbas III C. F. Org. Lett. 2012; 14: 1858
  • 21 Stodulski M. Goetzinger A. Kohlhepp SV. Gulder T. Chem. Commun. 2014; 3435
  • 22 Zhu M. Lin S. Zhao GL. Sun J. Córdova A. Tetrahedron Lett. 2010; 51: 2708
  • 23 Xue H. Tan H. Wei D. Wei Y. Lin S. Liang F. Zhao B. RSC Adv. 2013; 3: 5382
    • 24a Das B. Venkateswarlu K. Damodar K. Suneel K. J. Mol. Catal. A: Chem. 2007; 269: 17
    • 24b Zhou L. Tan CK. Zhou J. Yeung YY. J. Am. Chem. Soc. 2010; 132: 10245
    • 24c Souza AV. A. Mendonca GF. Bernini RB. Mattos MC. S. J. Braz. Chem. Soc. 2007; 18: 1575
  • 25 Papcun JR. Fluorine Compounds, Inorganic, Potassium. In Kirk–Othmer Encyclopedia of Chemical Technology. John Wiley and Sons, Inc; Weinheim: 2000
    • 26a Barry JE. Finkelstein M. Moore WM. Ross SD. Tetrahedron Lett. 1984; 25: 2847
    • 26b Eberson L. Barry JE. Finkelstein M. Moore WM. Ross SD. Acta Chem. Scand., Ser. B 1985; 39: 249
    • 26c Finkelstein M. Hart SA. Moore WM. Ross SD. J. Org. Chem. 1986; 51: 3548
  • 27 Typical Procedure for the Dibromination of Olefin 1a Using NBS and Aqueous Ammonium Fluoride: To a solution of olefin (1a; 21 mg, 0.202 mmol, 1.0 equiv) in CH2Cl2 (1.0 mL) was added N-bromosuccinimide (78.3 mg, 0.44 mmol, 2.2 equiv) and saturated aqueous ammonium fluoride (0.16 mL) in the absence of light. The resulting mixture was stirred at room temperature and the reaction was monitored by TLC. The reaction was quenched with saturated aqueous Na2S2O3 (5 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined extracts were dried over anhydrous MgSO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography to yield the dibromide 2a (37.1 mg, 70%) as a white solid: 1H NMR (400 MHz, CDCl3): δ = 7.44–7.34 (m, 5 H), 5.16 (dd, J = 10.6, 5.5 Hz, 1 H), 4.09 (dd, J = 10.2, 5.5 Hz, 1 H), 4.03 (t, J = 10.4 Hz, 1 H); 13C NMR (400 MHz, CDCl3): δ = 138.66, 129.25, 128.93, 127.73, 50.98, 35.15; HRMS (EI): m/z [M]+ calcd. for C8H8Br2: 263.8967; found: 263.8972.