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Platelets are the smallest blood cells, numbering 150 to
350 � 109/L in healthy individuals.1 The ability of platelets
to adhere to an injured vessel wall and form aggregates was
first described in the 19th century by Bizzozero.2,3 Besides
their long-established roles in thrombosis (►Fig. 1) and
hemostasis,4,5 platelets are increasingly recognized as piv-
otal players in numerous other pathophysiological processes
including inflammation and atherogenesis,6 antimicrobial
host defense,7 and tumor growth and metastasis.8 Conse-
quently, profound knowledge of platelet structure and func-
tion is becoming more important in research and in many
fields ofmodernmedicine. This review provides an overview
of platelet physiology focusing particularly on the structure,
granules, surface glycoproteins (GPs), and activation path-
ways of platelets.

Platelet Structure

Platelets have an average diameter of 2 to 5 µm, a thickness of
0.5 µm, and amean cell volume of 6 to 10 fl.9 For convenience,
the structure of the platelet can be conceptually divided in a
peripheral zone, a sol-gel zone, an organelle zone, and
membrane systems.10

Peripheral Zone
The platelet plasma membrane is relatively smooth and has a
thicker glycocalyx (GP–polysaccharide covering) than other
blood cells. In high-resolution electronmicroscopy, it shows a
wrinkled appearance with many tiny folds and the randomly
distributed apertures of the open canalicular system.10,11 The
glycocalyx as the platelet’s exterior coat is a dynamic
structure and the site of first contact with the surrounding
milieu. It contains surface GPs required for the interaction of
platelets with subendothelial structures of the injured vessel
wall, platelet activation, platelet adhesion and aggregation, as
well as clot retraction.12 In particular, the mobile receptor
complexes GPIb-IX-V and integrin αIIbβ3 are abundantly
expressed on the surface of resting platelets and are of great
importance in hemostasis (see below).13,14

Below the glycocalyx is the lipid bilayer,15 which is
incompressible and unstretchable. Consequently, additional
membrane needed for platelet spreadingmust be provided by
the tiny folds of the platelet surface and the internalized
membrane parts of the open canalicular system.16 The lipid
bilayer appears morphologically similar to the unit mem-
branes of other cell types but plays an important role in blood
coagulation. It contains tissue factor (TF), which is exposed on
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Abstract Platelets are the smallest blood cells, numbering 150 to 350 � 109/L in healthy
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roles in thrombosis and hemostasis, platelets are increasingly recognized as pivotal
players in numerous other pathophysiological processes including inflammation and
atherogenesis, antimicrobial host defense, and tumor growth and metastasis. Conse-
quently, profound knowledge of platelet structure and function is becoming more
important in research and in many fields of modern medicine. This review provides an
overview of platelet physiology focusing particularly on the structure, granules, surface
glycoproteins, and activation pathways of platelets.
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the platelet surface in its inactive form along with negatively
charged phosphatidylserine following platelet activation.17

Subsequently, activated platelets release TF-bearing micro-
particles (MP) capable of binding coagulation factors Va, VIIa,
and Xa to their surface phosphatidylserine. Through the
interaction of these coagulation factors with the meanwhile
decrypted TF, thrombin generation is enhanced on the surface
of activated platelets as well as on platelet-derived MP.10

The platelet’s submembrane area lies directly under the
lipid bilayer and is of great importance for platelet function.
It contains a system of thin actin filaments—the membrane
contractile cytoskeleton—which is required for platelet
shape change and the translocation of receptors and
particles over the platelet’s surface.18 In the submembrane
compartment, the cytoplasmic domains of all transmem-
brane receptors interact with proteins, many of which are
associated with calmodulin, myosin, and actin filaments
that constitute the above-mentioned cytoskeleton.19

Thereby, they regulate the signaling processes required
for platelet activation.

Sol-Gel Zone
The transparent yet viscous matrix inside platelets is labeled
the sol-gel zone. It resembles liquid gel and contains
organized microtubules and microfilaments, randomly
distributed glycogen, a few smooth and clathrin-coated
vesicles, as well as secretory organelles. Microtubules are
arranged in circumferential coils close to the cellwall, thereby
forming a system that supports the membrane contractile
cytoskeleton.20–22 Various experimental approaches strongly
suggest that microtubules are needed for maintaining the
discoid shape of human platelets.23,24 Actin microfilaments
in the sol-gel zone form the cytoplasmic actin filament
cytoskeleton, the matrix in which all organelles are
suspended andwhich keeps organelles apart from each other
and from the cell wall in the resting platelet.10,25 Following
platelet activation, the cytoplasmic actin system constricts

the microtubule coils moving α-granules and dense bodies to
the platelet center,26 which may ultimately result in the
secretion of their contents through the open canalicular
system.25,27

Organelle Zone
Three major types of secretory organelles are present in
platelets: α-granules, dense granules, and lysosomes
(►Table 1). In addition, platelets contain simple mitochon-
dria, which are important for their energy metabolism,
glycosomes,28 electron dense chains and clusters,29 and
tubular inclusions.30

α-granules have a round to oval shapewith a diameter of 200
to 500 nm. An average human platelet contains 50 to 80 α-
granules, which makes them the most frequent organelles.31,32

In resting platelets, α-granules are separated from each other
by the cytoplasmic actin filament cytoskeleton. The fusion of
α-granules during long-termplatelet storage is a first sign of cell
damage.33 In vivo, fusion of α-granules resulting in giant
α-granules is seen in patients with Paris–Trousseau–Jacobsen
syndrome,34 White platelet syndrome,35 and Medich giant
platelet disorder.30 While the submembrane zone of α-granules
contains von Willebrand factor (VWF) in tube-like structures,36

various proteins are found in their peripheral zone including
megakaryocyte-synthesized proteins such as coagulation
factor V, thrombospondin, P-selectin, and VWF, as well
as externally synthesized proteins taken up by platelets (e.g.
fibrinogen). The α-granule’s central zone appears denser than
its peripheral zone potentially indicating the presence of
proteins with binding sites for heavy metals.10

The three to eight dense granules per normal human
platelet are smaller than α-granules and display great mor-
phological variability.37 Their most prominent feature is an
electron-opaque spherical structure, which is usually sur-
rounded by an empty space. However, in some dense gran-
ules, this space is traversed by filaments or filled with a
granule-like substance.10 Besides adenine nucleotides such as
adenosine triphosphate (ATP) and adenosine diphosphate
(ADP), dense granules contain serotonin, pyrophosphate,
calcium, and magnesium (see below).

Other electron-opaque structures in the cytoplasm are
chains and clusters of hexagonal beads which are present in 2
to 22% of human platelets and seem to increase with age.29

The origin and function of these electron-dense formations
remains unknown. It was previously speculated that elec-
tron-dense chains and clusters represent precursors of dense
granules, but this hypothesis was abandoned after studying
patients with storage pool diseases, whose platelets lacked
dense granules while containing the usual amount of chains
and clusters.38

Human platelets also contain 0 to 2 spherical lysosomes,
which are slightly smaller than α-granules. Their content
comprises at least 13 acid hydrolases, cathepsin D and E,
lysosomal-associated membrane protein (LAMP)-2, and
CD63, and can be released in response to strong platelet
stimulation in vitro. However, the role of lysosomes in
platelet function and hemostasis remains largely
unknown.10

Fig. 1 Platelets in thrombosis. Scanning electron micrograph of a
portion of a human coronary artery thrombus, showing many
activated platelets adhering to a bed of fibrin strands. Also visible are
groups of microparticles and a few cholesterol crystals and
erythrocytes. (Image by John W. Weisel and Chandrasekaran
Nagaswami, Department of Cell and Developmental Biology,
University of Pennsylvania School of Medicine, Philadelphia, PA.
Reprinted with permission from Michelson.1)
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The glycogen-containing platelet glycosome is another
component of the platelet’s organelle zone.28 Glycosomes
have a round or oval shape, and a similar size to α-granules
so that they can easily be confused with glycogen-bearing α-
granules. Tubular inclusions, which often contain glycogen as
well, can be discriminated from glycosomes by their multi-
lamellar membrane.

Finally, mitochondria are seen in the organelle zone.
Despite their low number and simple structure, they provide
the platelet’s energy requirements, and make sure that a
blockade of anaerobic glycolysis does not impair platelet
function. Although mitochondria are also seen as important
providers of calcium by some authors, other investigations
favor the dense tubular system and extracellular calcium as
the major calcium sources in platelet activation.39

Membrane Systems
Besides the outer plasma membrane, the membrane systems
in human platelets comprise Golgi complexes, the surface-
connected open canalicular system, the dense tubular system,
and the rough endoplasmic reticulum.

Residues of megakaryocytic Golgi complexes are observed
in less than 1% of normal human platelets but can be found
more frequently in patients with certain hypogranular plate-
let disorders.35,40 The presence of Golgi complexes in platelets
from patients with hypogranular syndromes such as White
platelet syndrome may indicate ongoing granulopoiesis.35

The open canalicular system is a part of the platelet’s
surface membrane, which extends toward the interior of
the platelet and in doing so forms a tubular structure,41–43

which exerts three major functions. Its channels can be used
for the transport of plasma components such as fibrinogen to
α-granules44–46 and can also serve as route for the release of
granular contents during platelet activation.27 Moreover, the
channels of the open canalicular system can be evaginated
and thereby provide membrane parts needed for platelet
spreading following platelet adhesion to an injured vessel
wall.47 Through this mechanism, activated platelets are able
to increase their surface area more than fourfold compared
with resting discoid platelets.48

The dense tubular system is a residuum of the parent
megakaryocyte’s smooth endoplasmic reticulum and consists

of channels randomly dispersed in the platelet cytoplasm. The
channels are separated from the canaliculi of the open
canalicular system which appear empty by electron micros-
copy and—in contrast to them—contain an amorphous sub-
stance resembling the surrounding cytoplasm in opacity.41

Channels of rough endoplasmic reticulum are only seen in
patients with fast platelet turnover due to immune throm-
bocytopenia and are then usually studded with ribosomes.10

Platelet Granules

Platelet granules were first described in the late 19th century,
but it took until 1966 to differentiate dense granules from α-
granules,49 and another year to distinguish the latter from
lysosomes by the then newly developed method of electron
microscopy (►Table 1).50

Formation of Platelet Granules
The formation of platelet granules is initiated in the mega-
karyocyte, but their maturation continues in the circulating
platelet.51

α-Granules
The proteins stored in α-granules are provided by synthesis
and endocytosis. While synthesized proteins are transported
from the endoplasmic reticulum to the trans-Golgi network,
where they are packaged in immature granules,52,53 plasma
proteins are taken up by megakaryocytes via the endocytotic
pathway and uptake of plasma proteins via this pathway
continues in the mature platelet.51 Membrane trafficking
required for both pathways is mediated by coat proteins such
as clathrin, adaptor proteins (AP)-1, AP-2, AP-3, and other vesicle
trafficking proteins, for example, soluble N-ethylmaleimide
sensitive fusion protein (NSF) attachment protein receptors
(SNAREs) and monomeric GTPases such as Rabs. Thus, for
both pathways, clathrin-coated vesicles are formed through
membrane invagination under the influence of AP.51 However,
differences exist: AP-1 appears to play a pivotal role in the
synthetic pathway,31whereas AP-2mediates endocytosis.54 The
resulting vesicles from the trans-Golgi network or the plasma
membrane are then moved to multivesicular bodies, which
represent transient structures at an intermediate stage of

Table 1 General features of platelet granule types

Number/platelet Diameter (nm) Surface area
(µm2)/platelet

Common markers General function

α-granules 50–80 200–500 14 VWF
CXCL4 (PF4)
P-selectin

Hemostasis/thrombosis
Inflammation
Angiogenesis
Host defense
Mitogenesis

Dense granules 3–8 150 < 1 CD63
Serotonin

Hemostasis/thrombosis
Inflammation

Lysosomes < 3 200–250 < 1 Acid phosphatase Endosomal digestion

Abbreviations: CXCL4, chemokine (C–X–C motif) ligand 4; PF4, platelet factor 4; VWF, von Willebrand factor.
Source: Reprinted with permission from Flaumenhaft.51
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granule production in megakaryocytes.55 Multivesicular bodies
are involved in α-granule and dense granule sorting,55,56 and
kinetic studies have shown that endocytosed proteins are
transported fromendosomes to immaturemultivesicular bodies
to mature multivesicular bodies to α-granules.51 The latter
contain small vesicles called exosomes,55 which in part persist
in mature α-granules and can be released following platelet
activation.57Megakaryocyte-derived granules are transferred to
the nascent platelets on microtubule tracks during proplatelet
formation.51

Dense Granules
Dense granules are lysosome-related organelles, which means
that they originate from the endosomal system rather than
from the trans-Golgi network.58 In the endosomal compart-
ment, biogenesis of lysosome-related organelle complexes
(BLOCs) are involved in vesicle trafficking required for dense
granule formation.51 Besides BLOCs-1, -2, and -3,59–62 AP-3
plays an important role in dense granule formation, and like
defects in BLOC-2 or -3,63 certain mutations in the AP-3 gene
are associated with dense granule deficiency in Hermansky–
Pudlak syndrome. During megakaryopoiesis, dense granules
appear concomitantly with α-granules, and like α-granules,
early dense granules are also sorted inmultivesicular bodies.56

Their content becomes denser as they mature, most likely due
to increased membrane pump activity.51

Granule Content

α-Granules
α-granules contain membrane-associated and soluble
proteins, which are involved in various processes including

cell adhesion, coagulation, inflammation, cell growth, and host
defense (►Table 2). Following platelet activation, membrane-
bound granule proteins are expressed on the platelet surface,
whereas soluble granule proteins are released into the extra-
cellular compartment. Most of the membrane-bound proteins
are already present on the surface of resting platelets,37 for
example, integrins such as αIIbβ3, immunoglobulin family
receptors such as GPVI, Fc receptors (FcR), platelet endothelial
cell adhesion molecule, the GPIb-IX-V complex, tetraspanins,
CD36, and Glut-3.64,65 However, some membrane-associated
proteins including fibrocystin L, CD109, and P-selectin are
exclusively expressed on the surface of activated, rather than
resting, platelets.64 In particular, platelet surface P-selectin
expression is therefore widely used as a sensitive flow
cytometric marker of platelet activation (►Fig. 2).66–68

Proteins in platelet releasate can derive from different
platelet granules, exosomes, and from cleavage of initially
surface-bound proteins. However, proteomic analyses have
identified more than 300 soluble proteins released by α-
granules.64,69 Many of the released proteins are also found in
human plasma, prompting questions as to how the α-granule
constituents differ from their plasma counterparts in struc-
ture or function.

Dense Granules
Platelet dense granules contain high concentrations of
adenine nucleotides, namely, ADP and ATP,70 uracil and
guanine nucleotides, calcium, and potassium (►Table 3).
Moreover, polyphosphates and bioactive amines such as
serotonin and histamine are present in platelet dense
granules.71,72 The milieu within platelet dense granules is
kept at a pH of approximately 5.4 by a Hþ-ATPase

Table 2 α-granule contents

Type Examples

Integral membrane proteins αIIbβ3, GPIb-IX-V, GPVI, P-selectin

Coagulants, anticoagulants, and fibrinolytic proteins Factors V, IX, XIII, antithrombin, protein S, tissue
factor pathway inhibitor, plasminogen,
α2-macroglobulin

Adhesion proteins Fibrinogen, von Willebrand factor, thrombospondin

Chemokines CXCL1 (GRO-α), CXCL4 (PF4), CXCL5 (ENA-78),
CXCL8 (IL8), CCL2 (MCP-1), CCL3 (MIP-1α), CCL5
(RANTES)

Growth factors Epidermal growth factor, hepatocyte growth factor,
insulin-like growth factor, transforming growth
factor β

Angiogenic factors and inhibitors Vascular endothelium growth factor, fibroblast
growth factor, platelet-derived growth factor,
angiostatin, endostatin

Microbicidal proteins Thymosin-β4, thrombocidins1 and 2

Immune mediators Complement C3 precursor, complement C4
precursor, IgG

Abbreviations: CCL, chemokine (C–C motif) ligand; CXCL, chemokine (C–X–C motif) ligand; ENA-78, epithelial-derived neutrophil-activating peptide
78; GP, glycoprotein; GRO-α, growth-regulated oncogene α; IgG, immunoglobulin G; IL8, interleukin 8; MCP-1, monocyte chemotactic protein 1;
MIP-1α, macrophage inflammatory protein 1α; PF4, platelet factor 4; RANTES, regulated on activation normal T cell expressed and secreted.
Source: Reprinted with permission from Flaumenhaft.51
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proton pump.73 Furthermore, the multidrug resistance
protein 4 has been described on platelet dense granules
and is considered responsible for the uptake of adenine
nucleotides,74 whereas serotonin is trafficked from

platelet cytoplasm into dense granules by the vesicular
monoamine transporter 2. The latter may also concentrate
histamine into platelet dense granules.75 GPIb, integrin
αIIbβ3, CD63 (granulophysin), and LAMP-2 are among the

Fig. 2 Platelet function and molecular targets of antiplatelet agents. Initial platelet adhesion to damaged vessel walls is mediated by the binding
of exposed collagen to platelet surface GPVI and integrin α2β1 and by the binding of VWF to the platelet surface GPIb-IX-V complex. This complex
is also a receptor for other platelet ligands (thrombospondin, collagen, and P-selectin), leukocyte integrin αMβ2, and procoagulant factors
(thrombin, kininogen, factor XI, and factor XII). Thrombin, generated by the coagulation cascade, is a potent activator of human platelets through
two platelet surface receptors: PAR-1 and PAR-4. Three groups of platelet surface receptors provide important positive feedback loops for platelet
activation: P2Y1 and P2Y12 are stimulated by ADP released from platelet dense granules; 5HT 2A receptors (5HT2A) are stimulated by 5HT (also
known as serotonin) released from platelet dense granules; and the thromboxane prostanoid (TP) receptor is stimulated by TXA2 generated by the
platelet COX1-dependent signaling pathway. Platelet-to-platelet aggregation is mediated by fibrinogen and, at high shear flow, by VWF binding to
activated integrin αIIbβ3. Perpetuation of platelet-to-platelet aggregation is augmented by other receptors, including JAMA and JAMC, growth-
arrest specific gene 6 receptor and ephrin. Platelet-monocyte adhesion is initially mediated by the binding of platelet surface P-selectin to its
constitutively expressed cognate receptor, PSGL1, on the monocyte surface. Activated platelets, monocytes, and microparticles bind coagulation
factors and provide a surface for the generation of a fibrin clot. Approved antiplatelet agents and their molecular targets are shown in boxes.
Indirect inhibitors (UFH, LMWH) and direct inhibitors (lepirudin, argatroban, bivalirudin, and dabigatran) of thrombin, unlike PAR-1 antagonists,
are anticoagulants rather than specific antiplatelet drugs. However, their inhibition of thrombin results in reduced platelet activation.
Investigational strategies for novel antiplatelet agents are shown by the symbols adjacent to: GPIb-IX-V, GPVI, α2β1, EP3, 5HT2A, P2Y1, P2Y12,
PSGL1, PI3Kβ, αIIbβ3, and the TP receptor. AA, arachidonic acid; COX1, cyclooxygenase 1; EP3, prostaglandin E2 receptor EP3 subtype; GP,
glycoprotein; JAMA, junctional adhesion molecule A; JAMC, junctional adhesion molecule C; LMWH, low-molecular-weight heparin; NO, nitric
oxide; PAR, protease-activated receptor; PDE, phosphodiesterase; PG, prostaglandin; PI3Kβ, phosphoinositide 3-kinase β-isoform; PSGL1,
P-selectin glycoprotein ligand-1; TXA2, thromboxane A2; UFH, unfractionated heparin; VWF, von Willebrand factor; 5HT, 5-hydroxytryptamine.
(Modified with permission from Michelson.68)
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membrane-associated proteins found in platelet dense
granules.76

Lysosomes
Platelet lysosomes bear protein degrading enzymes such as
cathepsins, elastase, and collagenase; carbohydrate degrad-
ing enzymes such as glucosidase and galactosidase; and acid
phosphatase as phosphate ester cleaving enzyme (►Table 4).
LAMP-1, LAMP-2, and CD63 are found in the lysosomal
membrane in a highly glycosylated state and support its
protective function.51

Granule Secretion

Mechanisms of Platelet Granule Secretion
Membrane fusion plays a key role in platelet granule secretion.
Following platelet activation, platelet granules accumulate in the
cell center during platelet shape change, and may fuse with one
another in homotypic fusion.77 In a further step, granules fuse
with the open canalicular system releasing their contents into its
channels and thereby finally to the extracellular space.45,78

Another mechanism of granule release is the direct fusion of
platelet granuleswith the plasmamembrane.79 SolubleN-ethyl-
maleimide-sensitive factor attachment protein receptors
(SNAREs) on platelet granules, namely, vesicular SNAREs
(vSNAREs) and so-called target SNAREs (tSNAREs), associated
with the plasma membrane and the open canalicular system
mediate the fusion of platelet granules with one another, the
open canalicular systemand theplasmamembrane.80,81Vesicle-
associated membrane protein (VAMP)-8 is considered the most
important vSNARE for platelet granule release, whereas VAMPs-

2 and -3mayplayminor roles.80,82,83 Syntaxins 2, 4, 7, 11, and12
and SNAP-23, -25, and -29 have been described as
tSNAREs.82,84–86 The function of SNAREs in platelet granule
secretion is regulated by chaperone proteins such as the
Mg2þ-dependent ATPase NSF.87 NSF disassembles membrane-
associated SNARE complexes thereby enabling their interaction
with cognate SNAREs on opposing membranes. Its important
role in the platelet release reaction is exemplified by studies
showing that inhibitory peptides and antibodies to NSF impair
platelet α-granule release.87,88Other important players in plate-
let granule release are Sec1/Munc proteins and Rab proteins,
which can influence the function of SNAREs.89–94

In addition, the membrane’s lipid composition affects its
ability to fuse.95 The platelet cytoskeleton is also involved in
granule secretion. Although actin polymerization seems to
inhibit α-granule and dense granule release in the resting
platelet,96 it facilitates granule secretion during platelet
activation.97

Furthermore, actomyosin contraction may foster granule
secretion.98–100 Microtubules are considered a minor player
in platelet granule release since mice with microtubule
deficiencies exhibit only a modest impairment of granule
secretion.101,102

Similar to other cells, the increase of intracellular Caþþ

supports granule secretion in platelets.103 Finally, several
protein C kinase isoforms take part in the platelet release
reaction. In particular, protein C kinase isoforms α and β
support granule secretion,104 while others differentially
affect granule release.104–106

Functions of Platelet Granule Secretion
Platelet granule secretion is involved in hemostasis and
thrombosis, inflammation, atherogenesis, antimicrobial
host defense, and mitogenesis.51

Upon platelet activation, α-granules release fibrinogen
and VWF, which promote platelet–platelet and platelet–
endothelial cell interactions. Furthermore, the fibrinogen
receptor αIIbβ3, the collagen receptor GPVI, and components
of the VWF receptor complex GPIb-IX-V, which are found in
α-granules, are expressed on the platelet surface and
subsequently support platelet adhesion.37,107 By releasing
coagulation factors such as factors V and IX,108 α-granules
also participate in secondary hemostasis. Finally, α-granules
may be involved in the maintenance of hemostatic balance
by secreting proteins that limit coagulation including
antithrombin, protein S, and TF pathway inhibitor.109,110

The contribution of α-granules to normal hemostasis is
evidenced by the bleeding tendency in patients with gray
platelet syndrome.111 Based on their content, an involvement
of α-granules in thrombosis is expected,64,69 although their
exact role remains to be determined.

Dense granules participate in hemostasis and thrombosis
as the primary source of ADP, which acts as a strong platelet
agonist at sites of vascular injury. Moreover, the secretion of
serotonin by dense granules supports platelet aggregation
and promotes vascular tone,112 while released Caþþand
polyphosphates contribute to clot formation.51 On the con-
trary, some of the released diadenosine polyphosphates are

Table 3 Dense granule contents

Type Examples

Cations Ca2þ, Mg2þ, Kþ

Phosphates Polyphosphate, pyrophosphate

Bioactive amines Serotonin, histamine

Nucleotides ADP, ATP, UTP, GTP

Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphos-
phate; GTP, guanosine triphosphate; UTP, uridine triphosphate.
Source: Reprinted with permission from Flaumenhaft.51

Table 4 Lysosomal contents

Type Examples

Protein degrading enzymes Cathepsins, elastase,
collagenase,
carboxypeptidase

Carbohydrate degrading enzymes Glucosidase,
galactosidase,
mannosidase

Phosphate ester cleaving enzymes Acid phosphatase

Source: Reprinted with permission from Flaumenhaft.51
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partial antagonists of the ADP receptors and may be involved
in limiting platelet activation once it has begun.113,114 The
importance of dense granules in normal hemostasis is exem-
plified by the bleeding diathesis in patients with Hermansky–
Pudlak syndrome or Chediak–Higashi syndrome, whereas
their involvement in thrombus formation has been proven
by in vitro and in vivo experiments.115,116

Both α-granules and dense granules are involved in
inflammatory processes. α-granules provide platelet surface
receptors enabling the interaction with leukocytes and
endothelial cells,117,118 thereby leading to mutual activation,
cell recruitment, and propagation of their inflammatory
phenotype.119 Furthermore, α-granules release numerous
proinflammatory and immune-modulating factors fostering
recruitment and activation of inflammatory cells, chemokine
secretion, as well as cell differentiation.120–123 The role of
α-granules in atherosclerosis is mostly attributable to their
proinflammatory actions.124

Dense granules can secrete polyphosphates and thus
initiate the generation of bradykinin,112 which supports
vascular permeability and edema in vivo.125 An involvement
of dense granules in atherogenesis has been shown in mice
with dense granule deficiency.126

α-granules participate in host defense by providing
various antimicrobial proteins, for example, chemokine
(C–X–C motif) ligand 4 (CXCL4), derivatives of CXCL7, CCL5
(RANTES), and thymosin-β4,127 as well as complement and
complement-binding proteins.64

Proangiogenic proteins such as vascular endothelial growth
factor, platelet-derived growth factor, fibroblast growth
factor, epidermal and insulin-like growth factor,128 as well
as inhibitors of angiogenesis including thrombospondin-1,
CXCL4, angiostatin, and endostatin have been identified in
α-granules.129,130 Recent studies suggest that pro- and anti-
angiogenic factors are released agonist specifically.130–132

Besides angiogenesis, α-granule secretion may play a role in
tumor growth and stability,133 metastasis,134,135 and wound
healing.136,137

Platelet Surface Glycoproteins

Although there are many types of platelet surface GPs,138 the
GPIb-IX-V complex, GPVI, and integrin αIIbβ3 (also known as
GPIIb/IIIa) are considered themost important platelet surface
GPs mediating platelet adhesion, activation, and aggregation,
respectively, and their structures and functions will therefore
be described in more detail below.

GPIb-IX-V Complex
The GPIb-IX-V complex acts as platelet surface receptor and is
heavily involved in normal hemostasis as well as in arterial
thrombosis.139,140

Structure
Human GPIbα is a type-I, membrane-spanning GP with an
N-terminal, ligand-binding domain, a sialomucin core, a
transmembrane region, and a cytoplasmic tail.141 Its major
ligand-binding domain comprises seven tandem leucine-rich

repeats, an N-terminal capping sequence, a C-terminal flank-
ing sequence, and an anionic sequence.139,142–144 GPIbα and
GPIX are present at approximately 25,000 copies per platelet,
whereas GPV is present at approximately 12,500 copies.145

Function
GPIb-IX-V propagates the adhesion of activated platelets to
endothelial cells and subendothelial structures of the injured
vesselwall, mainly by binding its most important ligand VWF,
which is itself able to bind collagen (►Fig. 2).146 Another
ligand for GPIb-IX-V is thrombospondin, which seems to
mediate platelet adhesion at high shear rates in the absence
of VWF.147 It has been shown that GPIbα can also bind
P-selectin, thereby offering another mechanism of platelet-
endothelial cell and platelet–platelet interactions.148 Further-
more, αMβ2 (Mac-1) serves as a counter receptor for GPIb-
IX-V, enabling the attachment of platelets to leukocytes.149

Besides its role in platelet adhesion, GPIb-IX-V assembles
procoagulant activity on activated platelets by providing
binding sites for α-thrombin, factor XI, and high-molecular-
weight kininogen.142,150,151 On the contrary, the binding of
factor XII to GPIbα competes with kininogen binding and
inhibits thrombin-dependent platelet aggregation associated
with thrombin binding to GPIbα.152

Finally, complex signaling processes are initiated by cross-
linking of GPIb-IX-V by VWF or other multivalent ligands,
ultimately resulting in the activation of αIIbβ3 and
ectodomain shedding of GPIbα.140,141,153–155

Glycoprotein VI
GPVI is the major signaling receptor for collagen on human
platelets, and exerts functions in hemostasis and other
platelet-mediated processes.156–159

Structure
GPVI belongs to the immunoglobulin superfamily of recep-
tors. It consists of 319 amino acids and is present at approxi-
mately 3,700 copies per platelet.145,160 GPVI comprises two
extracellular immunoglobulin domains, D1 andD2, which are
connected by a peptide strand and linked to the transmem-
brane domain via a glycosylated stem.160 The cytoplasmic
domain of human GPVI consists of 51 amino acids and shows
an amino acid–rich area near the transmembrane region and
a proline-rich area.160–162 GPVI exists as a complex with the
FcR γ-chain, which is expressed on platelets in monomeric
and dimeric forms.163,164 Themonomeric form is particularly
present on unactivated platelets and its affinity for collagen is
too low to allow activation in response to physiological
concentrations of collagen.165,166 In contrast, the dimeric
form has an increased affinity for collagen and binding of
collagen to the dimeric complex may result in intracellular
signals leading to the generation of further dimers. Without
the FcR γ-chain, GPVI does not reach the platelet surface and
collagen-induced platelet activation is not initiated.167

Function
Platelets adhere to exposed collagen fibers by binding of immo-
bilized VWF to GPIb-IX-V.160 This allows binding of collagen to
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low-affinity GPVI and results in intracellular signals with
subsequent inside-out activation of integrins including α2β1
and αIIbβ3 as well as further clustering of GPVI (►Fig. 2).
Thereby, GPVI activation is reinforced, and stable platelet
adhesion and spreading are promoted through binding of
α2β1 and αIIbβ3 to collagen and VWF, respectively.168,169

Following activation by collagen and other agonists, GPVI
is rapidly shed from platelet surface, most likely to prevent
excessive collagen-stimulated megakaryocyte and platelet
activation in the bone marrow and after minor damages to
the vasculature.160

Inherited defects in GPVI in two patients were only
associated with a mild bleeding syndrome suggesting that
hemostasis may not be the primary role of the GPVI receptor
complex.160,170,171 GPVI may also be involved in processes
beyond hemostasis,172 for example, in the pathogenesis of
rheumatoid arthritis and the development of the cardiovas-
cular system.173,174

Integrin αIIbβ3
Platelet surface integrin αIIbβ3 (previously termed GPIIb/IIIa)
is transformed from its resting low-affinity state to a high-
affinity receptor as the final step of platelet activation and
subsequently mediates platelet aggregation at a molecular
level (►Fig. 2).175,176

Structure
αIIbβ3 belongs to the integrin family of cell adhesion mole-
cules177–179 and is found on platelets, megakaryocytes, mast
cells, basophils, and some tumor cells.180–185 With 80,000
to 100,000 copies per platelet,186,187 it constitutes the major
integral plasma membrane protein on human platelets
accounting for 17% of the platelet membrane protein
mass.188 Moreover, αIIbβ3 is present in platelet α-granule
membranes and can become expressed following platelet
activation.189,190

αIIbβ3 is a heterodimer consisting of an αIIb and β3
subunit, both synthesized as single glycosylated polypeptide
chains.191 αIIb consists of 1,008 amino acids,192whereas β3 is
composed of 762 amino acids.193,194 Both subunits comprise
a large extracellular domain, a transmembrane segment, and
a short cytoplasmic tail,193–196 and are arranged on the
platelet surface in a type-1 orientation with the N-terminus
residing in the extracellular region and the C-terminuswithin
the cytosol.197

Function
Agonist-induced platelet activation triggers intracellular
signaling events that converge at the cytoplasmic tails of
αIIbβ3 and are then transmitted across the platelet mem-
brane via inside-out signaling ultimately resulting in the
transformation of the extracellular domain of αIIbβ3 into a
high-affinity receptor for fibrinogen and VWF.176,197,198 By
binding divalent fibrinogen or multivalent VWF,176,198

activated αIIbβ3 enables platelet–platelet interactions and
consequently the formation of platelet aggregates.
Moreover, by binding vitronectin, fibronectin, or thrombo-
spondin-1,199–201 activated αIIbβ3 may also mediate platelet

adhesion to subendothelial structures and regulate platelet
aggregation.197

The role of activated αIIbβ3 in platelet aggregation makes
it a prime target for antithrombotic therapy (►Fig. 2). Indeed,
antibodies, peptides, and nonpeptides binding to αIIbβ3 have
been shown to effectively block αIIbβ3-mediated platelet–
platelet bridging, and threeGPIIb/IIIa receptor antagonists are
currently approved to prevent and treat detrimental platelet
aggregation in patients undergoing percutaneous coronary
interventions.202,203

Platelet Activation Pathways

Human platelets can be activated by numerous agonists via
different pathways.204 Besides the above-discussed processes
of VWF- and collagen-induced platelet activation, in particu-
lar, thrombin and ADP play major roles in human platelet
activation (►Fig. 2).

Thrombin
The serine protease thrombin is the most potent platelet
agonist and activates platelets via protease-activated recep-
tors (PARs) and GPIb-IX-V.205–209 The four PARs belong to the
superfamily of G-protein-coupled receptors with seven
transmembrane-spanning α-helices, four extracellular loops
and domains, and four intracellular loops and domains.210

PAR-1 and PAR-4 mediate most of the platelet response to
thrombin on human platelets,205,211 whereas PAR-2 is not
expressed on platelets and PAR-3 functions only as a cofactor
for thrombin activation of PAR-4.212 While PAR-1 is sensitive
to low levels of thrombin, PAR-4 triggers platelet activation
and aggregation only at high thrombin concentrations, and
cleavage of PAR-4 by thrombin occurs 20- to 70-fold slower
than cleavage of PAR-1.213 Moreover, anti-PAR-1 blocking
antibodies and PAR-1 antagonists blocked the activation of
platelets by low concentrations of thrombin, whereas anti-
PAR-4 blocking antibodies did not affect thrombin-inducible
platelet activation.211 Therefore, PAR-1 is the most important
receptor for the activation of human platelets by thrombin. In
2014, the first PAR-1 receptor antagonist (►Fig. 2) was
approved for clinical use in patients with a history of
myocardial infarction or peripheral arterial disease to prevent
thrombotic cardiovascular events based on the results of two
large clinical trials.214,215

Adenosine Diphosphate
ADP is one of the major components of the releasate from
activated platelets, and its critical role in the process of platelet
activation and aggregationwas recognizedmore than 50 years
ago.216 It acts as an agonist at two platelet purinergicG-protein
coupled receptors—the Gq-coupled P2Y1 and the Gi-coupled
P2Y12 receptor. Like other P2Y receptors, P2Y1 and P2Y12 are
seven-membrane-spanning proteins with a carboxyl terminal
domain on the cytoplasmic side and an amino terminal
domain being exposed to the extracellular environment.217

P2Y1 activation initiates ADP-induced platelet aggregation and
is responsible for platelet shape change.218 However, without
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P2Y12 activation, the result is a small and reversible platelet
aggregation. P2Y12 stimulation results in amplification and
stabilization of the aggregation response. There is a complex
interplay between P2Y1 and P2Y12,219 and coactivation of
both is necessary for full platelet aggregation.220 Due to its
prominent role in platelet aggregation, the P2Y12 receptor
has become a major target of antiplatelet therapy
(►Fig. 2),68,221,222 and the prescription of a P2Y12 receptor
antagonist in addition to aspirin is the current standard of
care in patients with acute coronary syndromes and in
those undergoing percutaneous cardiovascular interventions
with stent implantation.223–225 In contrast, no antagonists of
the P2Y1 receptor have been approved for clinical use.

Conclusion

New imaging techniques as well as in vitro and in vivo studies
have resulted in a comprehensive view of platelet structure,
secretion, adhesion, and activation, thereby providing the
foundation of today’s understanding of the role of platelets in
health and disease. Nevertheless, there still remain numerous
knowledge gaps with regard to platelet physiology and
pathophysiology, which offer promising targets for further
investigations. Most important, evolving knowledge on pla-
telets needs to be integrated in future research efforts with
the ultimate goal of improving patient care.
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