Subscribe to RSS
DOI: 10.1055/s-0035-1561485
From Simple Cyclic 1,3-Ketoamides to Complex Spirolactams by Supported Heterogeneous Organocatalysis with PS-BEMP
Publication History
Received: 12 May 2016
Accepted after revision: 08 June 2016
Publication Date:
12 July 2016 (online)
In the memory of Professor Jean Normant
Abstract
The reaction between cyclic 1,3-ketoamides and Michael acceptors in the presence of a catalytic amount of a polymer-supported organobase PS-BEMP has been developed for a direct access to spirocyclic 1,3-ketolactams through a domino Michael addition/hemiacetalization sequence. The products could be isolated in high chemical yields and purities after simple filtration, and the catalyst could be re-used without any re-activation. These spirolactams, containing a hemiaminal moiety, may be viewed as precursors of N-acyliminium intermediates upon Lewis acid activation, which allowed various subsequent functionalizations leading to original polycyclic lactams.
Key words
supported organobase - Michael addition - spirolactam - heterogeneous organocatalysis - N-acyliminium intermediateSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561485.
- Supporting Information
-
References
- 1a Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer RI, Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000; 3815
- 1b Kirschning A, Monenschein A, Wittenberg R. Angew. Chem. Int. Ed. 2001; 40: 650
- 2a Puglisi A, Benaglia M, Porta R, Coccia F. Curr. Organocat. 2015; 2: 79
- 2b Atodiresei I, Vila C, Rueping M. ACS Catal. 2015; 5: 1972
- 3a Clapham B, Reger TS, Janda KD. Tetrahedron 2001; 57: 4637
- 3b Benaglia M, Puglisi A, Cozzi F. Chem. Rev. 2003; 103: 3401
- 3c Anwander R. Immobilization of Molecular Catalysts . In Handbook of Heterogeneous Catalysis . 2nd ed., Vol. 1; Ertl G, Knözinger H, Schüth F, Weitkamp J. Wiley-VCH; Weinheim: 2008: 583-613
- 3d Yamaguchi K, Mizuno N. Synlett 2010; 2365
- 3e Rodríguez-Escrich C, Pericàs MA. Eur. J. Org. Chem. 2015; 1173
- 4a Iijima K, Fukuda W, Tomoi M. J. Macromol. Sci. Pure Appl. Chem. 1992; A29: 249
- 4b Xu W, Mohan R, Morrissey MM. Tetrahedron Lett. 1997; 38: 7337
- 5a Bernard M, Ford WT. J. Org. Chem. 1983; 48: 326
- 5b Westman J. Org. Lett. 2000; 3: 3745
- 5c Matsukawa S, Fukazawa K, Kimura J. RSC Adv. 2014; 4: 27780
- 6 Schwesinger R, Willaredt J, Schlemper H, Keller M, Schmitt D, Fritz H. Chem. Ber. 1994; 127: 2435
- 7a Brain CT, Brunton SA. Synlett 2001; 382
- 7b Graybill TL, Thomas S, Wang MA. Tetrahedron Lett. 2002; 43: 5305
- 7c Adams GL, Graybill TL, Sanchez RM, Magaard VW, Burton G, Rivero RA. Tetrahedron Lett. 2003; 44: 5041
- 7d Legrand O. Synlett 2000; 752
- 7e See also a special issue on strong and hindered bases: Chemfiles 2003, 3, No. 1.
- 8 Bensa D, Constantieux T, Rodriguez J. Synthesis 2004; 923
- 9a Coelho A, El-Maatougui A, Ravina E, Cavaleiro JA. S, Silva AM. S. Synlett 2006; 3324
- 9b Vedantham P, Guerra JM, Schoenen F, Huang M, Gor PJ, Georg GI, Wang JL, Neuenswander B, Lushington GH, Mitscher LA, Ye Q-Z, Hanson PR. J. Comb. Chem. 2008; 10: 185
- 9c Shao Y, Cole AG, Brescia M-R, Qin L-Y, Duo J, Stauffer TM, Rokosz LL, McGuinness BF, Henderson I. Bioorg. Med. Chem. Lett. 2009; 19: 1399
- 9d Baumann M, Baxendale IR, Brasholz M, Hayward JJ, Ley SV, Nikbin N. Synlett 2011; 1375
- 10a Ballini R, Barboni L, Castrica L, Fringuelli F, Lanari D, Pizzo F, Vaccaro L. Adv. Synth. Catal. 2008; 350: 1218
- 10b Bonollo S, Lanari D, Longo JM, Vaccaro L. Green Chem. 2012; 14: 164
- 11a Angelini T, Fringuelli F, Lanari D, Pizzo F, Vaccaro L. Tetrahedron Lett. 2010; 51: 1566
- 11b Zvagulis A, Bonollo S, Lanari D, Pizzo F, Vaccaro L. Adv. Synth. Catal. 2010; 352: 2489
- 12 Angelini T, Ballerini E, Bonollo S, Curini M, Lanari D. Green Chem. Lett. Rev. 2014; 7: 11
- 13 Angelini T, Bonollo S, Lanari D, Pizzo F, Vaccaro L. Org. Biomol. Chem. 2013; 11: 5042
- 14a Wack H, Taggi AE, Hafez AM, Drury III WJ, Lectka T. J. Am. Chem. Soc. 2001; 123: 1531
- 14b Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T. J. Am. Chem. Soc. 2002; 124: 6626
- 14c Pilling AW, Boehmer J, Dixon DJ. Angew. Chem. Int. Ed. 2007; 46: 5428
- 14d Pilling AW, Boehmer J, Dixon DJ. Chem. Commun. 2008; 832
- 14e Yang T, Ferrali A, Campbell L, Dixon DJ. Chem. Commun. 2008; 2923
- 14f Bogle KM, Hirst DJ, Dixon DJ. Tetrahedron 2010; 66: 6399
- 14g Muratore ME, Shi L, Pilling AW, Storer RI, Dixon DJ. Chem. Commun. 2012; 48: 6351
- 15a Bonne D, Coquerel Y, Constantieux T, Rodriguez J. Tetrahedron: Asymmetry 2010; 21: 1085
- 15b Bonne D, Constantieux T, Coquerel Y, Rodriguez J. Chem. Eur. J. 2013; 19: 2218
- 15c Bugaut X, Bonne D, Coquerel Y, Rodriguez J, Constantieux T. Curr. Org. Chem. 2013; 17: 1920
- 15d Allais C, Grassot J-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
- 15e Bugaut X, Constantieux T, Coquerel Y, Rodriguez J. 1,3-Dicarbonyls in Multicomponent Reactions . In Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M. Wiley-VCH; Weinheim: 2014. Chap. 5, 109
- 16 Kim JJ, Wood MR, Stachel SJ, de Leon P, Nomland A, Stump CA, McWherter MA, Schirripa KM, Moore EL, Salvatore CA, Selnick HG. Bioorg. Med. Chem. Lett. 2014; 24: 258
- 17a Jang J-H, Asami Y, Jang J-P, Kim S-O, Moon DO, Shin K-S, Hashizume D, Muroi M, Saito T, Oh H, Kim BY, Osada H, Ahn JS. J. Am. Chem. Soc. 2011; 133: 6865
- 17b Lesma G, Cecchi R, Cagnotto A, Gobbi M, Meneghetti F, Musolino M, Sacchetti A, Silvani A. J. Org. Chem. 2013; 78: 2600
- 18 de Almeida Leone P, Carroll AR, Towerzey L, King G, McArdie BM, Kern G, Fisher S, Hooper JN. A, Quinn RJ. Org. Lett. 2008; 10: 2585
- 19 Horn WS, Simmonds MS. J, Schwartz RE, Blaney WM. Tetrahedron 1995; 51: 3969
- 20a Kotha S, Deb AC, Lahiri K, Manivannan E. Synthesis 2008; 165
- 20b Marson CM. Chem. Soc. Rev. 2011; 40: 5514
- 20c Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 21a Khan FA, Dash J. J. Org. Chem. 2003; 68: 4556
- 21b Hilmey DG, Paquette LA. Org. Lett. 2005; 7: 2067
- 21c Presset M, Coquerel Y, Rodriguez J. Org. Lett. 2010; 12: 4212
- 21d Kang F-A, Sui Z. Tetrahedron Lett. 2011; 52: 4204
- 21e Gálvez J, Castillo J.-C, Quiroga J, Rajzmann M, Rodriguez J, Coquerel Y. Org. Lett. 2014; 16: 4126
- 21f Yang W, Sun X, Wembo Y, Rachita R, Deschamps JR, Mitchell LA, Jiang C, MacKerell AD. Jr, Xue F. Org. Lett. 2015; 17: 3070
- 22 Cossy J, Bouzide A, Leblanc C. J. Org. Chem. 2000; 65: 7257
-
23 Zhou C-Y, Che C-M. J. Am. Chem. Soc. 2007; 129: 5828
- 24a Li M, Dixon DJ. Org. Lett. 2010; 12: 3784
- 24b Li M, Hawkins A, Barber DM, Bultinck P, Herrebout W, Dixon DJ. Chem. Commun. 2013; 49: 5265
- 25a Habib-Zahmani H, Viala J, Hacini S, Rodriguez J. Synlett 2007; 1037
- 25b Sternativo S, Battistelli B, Bagnoli L, Santi C, Testaferri L, Marini F. Tetrahedron Lett. 2013; 54: 6755
- 26 Boddaert T, Coquerel Y, Rodriguez J. Adv. Synth. Catal. 2009; 351: 1744
- 27 For previous synthesis and characterization of these bicyclic ketones through the same strategy, see: Filippini M.-H, Faure R, Rodriguez J. J. Org. Chem. 1995; 60: 6872
- 28 For the synthesis of cyclic 1,3-ketoamides 1, see the Supporting Information.
- 29 Reaction of substrate 1f with acrolein also afforded the desired spiro compound 3fa, but this product was obtained as a mixture with a bicyclic compound 4fa resulting from a Michael addition/intramolecular aldolization sequence. For more details, see the Supporting Information.
- 30 Diastereomeric ratios have been determined from the NMR analysis of the crude product, using quantitative 13C NMR technic, with long relaxation delays.
- 31 CCDC 1429887 (3ed), CCDC 1429886 (5ld), and CCDC 1430278 (8fb) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For some recent reviews, see:
See, for example: