Synlett 2016; 27(03): 355-368
DOI: 10.1055/s-0035-1560725
account
© Georg Thieme Verlag Stuttgart · New York

Cycloadditions of Singlet Oxygen for Responsive Fluorescent Polymers

Samuel W. Thomas III*
Tufts University, Department of Chemistry, 62 Talbot Avenue, Medford, MA 02155, USA   Email: sam.thomas@tufts.edu
,
Esra Altinok
Tufts University, Department of Chemistry, 62 Talbot Avenue, Medford, MA 02155, USA   Email: sam.thomas@tufts.edu
,
Jingjing Zhang
Tufts University, Department of Chemistry, 62 Talbot Avenue, Medford, MA 02155, USA   Email: sam.thomas@tufts.edu
› Author Affiliations
Further Information

Publication History

Received: 30 August 2015

Accepted after revision: 21 September 2015

Publication Date:
09 December 2015 (online)


Abstract

This account describes progress in the author’s laboratory in the area of new fluorescent polymers that respond to the reactive oxygen species singlet oxygen (1O2). Key to the development of these materials are the [4+2] cycloaddition reactions between singlet oxygen and dienes such as acenes and furans. When covalently bound to conjugated polymer backbones, cycloadditions of these dienes with singlet oxygen can yield dramatic changes in the wavelength and intensity of luminescence: three such examples are given here. The account also summarizes our work to understand how changing the chemical structures of acenes affects reactivity with singlet oxygen as well as the cycloreversion of the resulting endoperoxides.

1 Introduction

2 Motivation

3 Organic Soluble Diene-Linked Conjugated Polymers

4 Red-Shifting Woes Lead to Reversibility

5 Building a Database

6 Integrating Other Acenes

7 Conclusion and Looking Forward

 
  • References

  • 1 Thomas SW, Joly GD, Swager TM. Chem. Rev. 2007; 107: 1339
  • 2 Swager TM. Acc. Chem. Res. 1998; 31: 201
  • 3 Yang JS, Swager TM. J. Am. Chem. Soc. 1998; 120: 5321
  • 4 Yang JS, Swager TM. J. Am. Chem. Soc. 1998; 120: 11864
  • 5 Dennler G, Scharber MC, Brabec CJ. Adv. Mater. 2009; 21: 1323
  • 6 Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Sausalito, CA: 2010
  • 7 Clennan EL. Tetrahedron 2000; 56: 9151
  • 8 Kearns DR. Chem. Rev. 1971; 71: 395
  • 9 Clennan EL, Pace A. Tetrahedron 2005; 61: 6665
  • 10 Ogilby PR. Chem. Soc. Rev. 2010; 39: 3181
  • 11 Ogilby PR. Photochem. Photobiol. Sci. 2010; 9: 1543
  • 12 Wilkinson F, Helman WP, Ross AB. J. Phys. Chem. Ref. Data 1995; 24: 663
  • 13 Schweitzer C, Schmidt R. Chem. Rev. 2003; 103: 1685
  • 14 Wilkinson F, Helman WP, Ross AB. J. Phys. Chem. Ref. Data 1993; 22: 113
  • 15 Abdou MS. A, Holdcroft S. Macromolecules 1993; 26: 2954
  • 16 Koch M, Nicolaescu R, Kamat PV. J. Phys. Chem. C 2009; 113: 11507
  • 17 Prein M, Adam W. Angew. Chem. Int. Ed. 1996; 35: 477
  • 18 Zaklika KA, Kaskar B, Schaap AP. J. Am. Chem. Soc. 1980; 102: 386
  • 19 Maranzana A, Ghigo G, Tonachini G. J. Am. Chem. Soc. 2000; 122: 1414
  • 20 Aubry JM, Mandardcazin B, Rougee M, Bensasson RV. J. Am. Chem. Soc. 1995; 117: 9159
  • 21 Montagnon T, Kalaitzakis D, Triantafyllakis M, Stratakis M, Vassilikogiannakis G. Chem. Commun. 2014; 50: 15480
  • 22 Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
  • 23 Fudickar W, Linker T. J. Am. Chem. Soc. 2012; 134: 15071
  • 24 Thorley KJ, Anthony JE. Isr. J. Chem. 2014; 54: 642
  • 25 Wu HY, Song QJ, Ran GX, Lu XM, Xu BG. Trends Anal. Chem. 2011; 30: 133
  • 26 Lucky SS, Soo KC, Zhang Y. Chem. Rev. 2015; 115: 1990
  • 27 Dolmans DE. J. G. J, Fukumura D, Jain RK. Nat. Rev. Cancer 2003; 3: 380
  • 28 Poulsen F, Jensen KB. J. Biomol. Screen. 2007; 12: 240
  • 29 Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN, Wagner DB. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 5426
  • 30 Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T. J. Am. Chem. Soc. 2001; 123: 2530
  • 31 Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T. Angew. Chem. Int. Ed. 1999; 38: 2899
  • 32 Kim S, Fujitsuka M, Majima T. J. Phys. Chem. B 2013; 117: 13985
  • 33 Pedersen SK, Holmehave J, Blaikie FH, Gollmer A, Breitenbach T, Jensen HH, Ogilby PR. J. Org. Chem. 2014; 79: 3079
  • 34 Kim S, Tachikawa T, Fujitsuka M, Majima T. J. Am. Chem. Soc. 2014; 136: 11707
  • 35 Song D, Cho S, Han Y, You Y, Nam W. Org. Lett. 2013; 15: 3582
  • 36 Chan KL, Sims M, Pascu SI, Ariu M, Holmes AB, Bradley DD. C. Adv. Funct. Mater. 2009; 19: 2147
  • 37 Thomas SW, Amara JP, Bjork RE, Swager TM. Chem. Commun. 2005; 4572
  • 38 Zhang JJ, Sarrafpour S, Pawle RH, Thomas SW. Chem. Commun. 2011; 47: 3445
  • 39 Altinok E, Friedle S, Thomas SW. Macromolecules 2013; 46: 756
  • 40 Graziano ML, Iesce MR, Scarpati R. J. Chem. Soc., Perkin Trans. 1 1982; 2007
  • 41 Zhang JJ, Sarrafpour S, Haas TE, Muller P, Thomas SW. J. Mater. Chem. 2012; 22: 6182
  • 42 Odom SA, Parkin SR, Anthony JE. Org. Lett. 2003; 5: 4245
  • 43 Fudickar W, Linker T. Chem. Eur. J. 2011; 17: 13661
  • 44 Fudickar W, Linker T. Chem. Commun. 2008; 1771
  • 45 Kim C, Huang PY, Jhuang JW, Chen MC, Ho JC, Hu TS, Yan JY, Chen LH, Lee GH, Facchetti A, Marks TJ. Org. Electron. 2010; 11: 1363
  • 46 Kaur I, Jia WL, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
  • 47 Zhang JJ, Smith ZC, Thomas SW. J. Org. Chem. 2014; 79: 10081
  • 48 Lehnherr D, Gao J, Hegmann FA, Tykwinski RR. Org. Lett. 2008; 10: 4779
  • 49 Lehnherr D, McDonald R, Tykwinski RR. Org. Lett. 2008; 10: 4163
  • 50 Anthony JE, Subramanian S, Parkin SR, Park SK, Jackson TN. J. Mater. Chem. 2009; 19: 7984
  • 51 Platt AD, Day J, Subramanian S, Anthony JE, Ostroverkhova O. J. Phys. Chem. C 2009; 113: 14006
  • 52 Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan WH, Shen GL, Yu RQ. Anal. Chem. 2012; 84: 10777
  • 53 Altinok E, Smith ZC, Thomas SW. Macromolecules 2015; 48: 6825