Synlett 2016; 27(02): 190-202
DOI: 10.1055/s-0035-1560706
account
© Georg Thieme Verlag Stuttgart · New York

Interplay of Method Development and Mechanistic Studies – From Aerobic Oxidative Coupling to Radical Reactions via Alkenyl Peroxides

Martin Klussmann*
,
Bertrand Schweitzer-Chaput
Further Information

Publication History

Received: 29 July 2015

Accepted after revision: 04 September 2015

Publication Date:
26 November 2015 (online)


Abstract

This account summarizes how scientific advances were made in the authors’ research group by combining method development in organic synthesis with detailed mechanistic studies. The discovery of an unexpected autoxidative coupling reaction led, by virtue of an ever increased understanding of its mechanism, to a strategy for green C–H functionalization reactions, novel modes of radical generation, addition reactions of ketones to alkenes and new insights into an old reaction, the Baeyer–Villiger oxidation.

1 Introduction

2 Aerobic Oxidative Coupling Reactions with Benzylic C–H Bonds

2.1 The Autoxidative Coupling with Xanthene

2.2 With a Little Help from Light – CHIPS

2.3 Related Autoxidative Coupling Reactions

3 How Does the Autoxidative Coupling Work?

3.1 An Excursion: Formation of Alkenyl Peroxides from Criegee Intermediates in the Atmosphere

3.2 How do Alkenyl Peroxides Form in Solution? Meet Criegee Again

3.3 The Full Mechanism of the Autoxidative Coupling Reaction

4 Previous Indications for Solution Chemistry of Alkenyl Peroxides

4.1 What Might Alkenyl Peroxides be Good for?

5 Concluding Remarks

Supporting Information

 
  • References

  • 1 New address: B. Schweitzer-Chaput, Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain.
    • 2a Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 2b Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 2c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 2d Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 3a Gulzar N, Schweitzer-Chaput B, Klussmann M. Catal. Sci. Technol. 2014; 4: 2778
    • 3b Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke W.-D, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S.-F, Plietker B, Laschat S. ChemCatChem 2013; 5: 82
    • 3c Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 4a Jones KM, Klussmann M. Synlett 2012; 23: 159
    • 4b Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
  • 5 Correia CA, Li C.-J. Tetrahedron Lett. 2010; 51: 1172
  • 6 Yoo W.-J, Correia CA, Zhang Y, Li C.-J. Synlett 2009; 138
  • 7 Liu H, Shi G, Pan S, Jiang Y, Zhang Y. Org. Lett. 2013; 15: 4098
  • 8 Pintér Á, Sud A, Sureshkumar D, Klussmann M. Angew. Chem. Int. Ed. 2010; 49: 5004
  • 9 Hock H, Kropf H. Angew. Chem. 1957; 69: 313
    • 10a Davies AG, Foster RV, Nery R. J. Chem. Soc. 1954; 2204
    • 10b Liguori L, Bjorsvik H.-R, Fontana F, Bosco D, Galimberti L, Minisci F. J. Org. Chem. 1999; 64: 8812
    • 10c Dussault PH, Lee H.-J, Liu X. J. Chem. Soc., Perkin Trans. 1 2000; 3006
  • 11 Pintér Á, Klussmann M. Adv. Synth. Catal. 2012; 354: 701
  • 12 Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
  • 13 Schweitzer-Chaput B, Sud A, Pinter Á, Dehn S, Schulze P, Klussmann M. Angew. Chem. Int. Ed. 2013; 52: 13228
    • 14a Foote CS. Acc. Chem. Res. 1968; 1: 104
    • 14b Iesce MR, Cermola F, Temussi F. Curr. Org. Chem. 2005; 9: 109
    • 15a Jefford CW, Rossier J.-C, Kohmoto S, Boukouvalas J. Chem. Commun. 1984; 1496
    • 15b Jefford CW, Rossier JC, Kohmoto S, Boukouvalas J. Helv. Chim. Acta 1985; 68: 1804
    • 15c Saito I, Nakagawa H, Kuo YH, Obata K, Matsuura T. J. Am. Chem. Soc. 1985; 107: 5279
    • 16a Gulzar N, Klussmann M. Org. Biomol. Chem. 2013; 11: 4516
    • 16b Gulzar N, Klussmann M. J. Vis. Exp. 2014; 88: e51504
  • 17 Mateo CA, Urrutia A, Rodríguez JG, Fonseca I, Cano FH. J. Org. Chem. 1996; 61: 810
    • 18a Boggs SD, Gudmundsson KS, Richardson LD. A, Sebahar PR. WO 2004/110999 A1, 2004
    • 18b Gudmundsson KS. WO 2006/121467 A2, 2006
    • 18c Lennox WJ, Qi H, Lee D.-H, Choi S, Moon Y.-C. WO 2006/065480 A2, 2006
  • 19 Gulzar N, Jones KM, Konnerth H, Breugst M, Klussmann M. Chem. Eur. J. 2015; 21: 3367
    • 20a Piscopo CG, Buhler S, Sartori G, Maggi R. Catal. Sci. Technol. 2012; 2: 2449
    • 20b Zhang B, Xiang S.-K, Zhang LH, Cui Y, Jiao N. Org. Lett. 2011; 13: 5212
  • 21 Huo C, Yuan Y, Wu M, Jia X, Wang X, Chen F, Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
  • 22 More NY, Jeganmohan M. Chem. Eur. J. 2015; 21: 1337
    • 23a Gunduz H, Kumbaraci V, Talinli N. Synlett 2012; 23: 2473
    • 23b Tanoue A, Yoo W.-J, Kobayashi S. Org. Lett. 2014; 16: 2346
    • 23c Ueda H, Yoshida K, Tokuyama H. Org. Lett. 2014; 16: 4194
    • 23d Huo C, Wu M, Chen F, Jia X, Yuan Y, Xie H. Chem. Commun. 2015; 51: 4708
    • 24a Chudasama V, Fitzmaurice RJ, Caddick S. Nat. Chem. 2010; 2: 592
    • 24b Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 25a Ter Borg AP, Van Helden R, Bickel AF. Rec. Trav. Chim. Pays Bas 1962; 81: 164
    • 25b Ter Borg AP, Gersmann HR, Bickel AF. Rec. Trav. Chim. Pays Bas 1966; 85: 899
    • 25c Dulog L, Tsobanidis K. Makromol. Chem. Rapid Commun. 1981; 2: 407
    • 25d Valgimigli L, Amorati R, Petrucci S, Pedulli GF, Hu D, Hanthorn JJ, Pratt DA. Angew. Chem. Int. Ed. 2009; 48: 8348
    • 25e Salamone M, Mangiacapra L, Dilabio GA, Bietti M. J. Am. Chem. Soc. 2013; 135: 415
    • 26a Olah GA, Parker DG, Yoneda N. Angew. Chem., Int. Ed. Engl. 1978; 17: 909
    • 26b Leere Øiestad ÅM, Petersen AC, Bakken V, Vedde J, Uggerud E. Angew. Chem. Int. Ed. 2001; 40: 1305
  • 27 Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
  • 28 Schweitzer-Chaput B, Kurtén T, Klussmann M. Angew. Chem. Int. Ed. 2015; 54: 11848
    • 29a Paul H, Small RD, Scaiano JC. J. Am. Chem. Soc. 1978; 100: 4520
    • 29b Avila DV, Ingold KU, Lusztyk J, Green WH, Procopio DR. J. Am. Chem. Soc. 1995; 117: 2929
  • 30 Criegee R. Angew. Chem., Int. Ed. Engl. 1975; 14: 745
  • 31 Sander W. Angew. Chem. Int. Ed. 2014; 53: 362
    • 32a Stone D, Whalley LK, Heard DE. Chem. Soc. Rev. 2012; 41: 6348
    • 32b Vereecken L, Francisco JS. Chem. Soc. Rev. 2012; 41: 6259
    • 33a Gutbrod R, Schindler RN, Kraka E, Cremer D. Chem. Phys. Lett. 1996; 252: 221
    • 33b Sebbar N, Bozzelli JW, Bockhorn H. J. Phys. Chem. A 2004; 108: 8353
    • 33c Donahue NM, Drozd GT, Epstein SA, Presto AA, Kroll JH. Phys. Chem. Chem. Phys. 2011; 13: 10848
    • 33d Kurtén T, Donahue NM. J. Phys. Chem. A 2012; 116: 6823
    • 33e Liu F, Beames JM, Petit AS, McCoy AB, Lester MI. Science 2014; 345: 1596
  • 34 Also called ‘Criegee intermediate’, but we use the term ‘adduct’ here to avoid confusion with the carbonyl oxide ‘Criegee intermediate’, see: Renz M, Meunier B. Eur. J. Org. Chem. 1999; 737
    • 35a Dussault PH, Lee IQ. J. Am. Chem. Soc. 1993; 115: 6458
    • 35b Dussault PH, Lee IQ, Lee H.-J, Lee RJ, Niu QJ, Schultz JA, Zope UR. J. Org. Chem. 2000; 65: 8407
    • 36a Criegee R. Liebigs Ann. Chem. 1948; 560: 127
    • 36b Doering WV. E, Dorfman E. J. Am. Chem. Soc. 1953; 75: 5595
  • 37 Dutta B, Jana S, Bhunia S, Honda H, Koner S. Appl. Catal. A: Gen. 2010; 382: 90
  • 38 Hermans I, Peeters J, Jacobs PA. Top. Catal. 2008; 50: 124
    • 39a Schmitz E, Brede O. J. Prakt. Chem. 1970; 312: 43
    • 39b Schulz M, Görmar G, Lukáč I. J. Prakt. Chem. 1990; 332: 491
    • 39c Grebenshchikov IN, Dykman AS, Pinson VV. Russ. J. Org. Chem. 2008; 44: 617
  • 40 Pavlinec J, Lazár M. Collect. Czech. Chem. Commun. 1984; 49: 404
    • 41a Petrov LV, Drozdova TI, Lyuta LY, Solyanikov VM. Russ. Chem. Bull. 1990; 39: 226
    • 41b Petrov LV, Solyanikov VM. Russ. Chem. Bull. 1996; 45: 340
    • 42a Kropf H, Ball M. Liebigs Ann. Chem. 1976; 2331
    • 42b For 1,3,5-triazine-peroxides, see: Sokolov NA, Usova LG, Vyshinskii NN, Morozov OS. Russ. J. Gen. Chem. 1972; 42: 2069
    • 43a Kharasch MS, Kuderna J, Nudenberg W. J. Org. Chem. 1953; 18: 1225
    • 43b Nikishin GI, Somov GV, Petrov AD. Russ. Chem. Bull. 1961; 10: 1924
    • 43c Hájek M, Šilhavý P, Málek J. Tetrahedron Lett. 1974; 15: 3193
    • 43d Iwahama T, Sakaguchi S, Ishii Y. Chem. Commun. 2000; 2317
    • 43e Xie J, Huang Z.-Z. Chem. Commun. 2010; 46: 1947
    • 43f Majima S, Shimizu Y, Kanai M. Tetrahedron Lett. 2012; 53: 4381
    • 43g Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
    • 43h Zhang F, Du P, Chen J, Wang H, Luo Q, Wan X. Org. Lett. 2014; 16: 1932
    • 43i Zhu L, Chen H, Wang Z, Li C. Org. Chem. Front. 2014; 1: 1299
  • 44 Kornblum N, DeLaMare HE. J. Am. Chem. Soc. 1951; 73: 880
    • 45a Zheng X, Lu S, Li Z. Org. Lett. 2013; 15: 5432
    • 45b Zheng X, Lv L, Lu S, Wang W, Li Z. Org. Lett. 2014; 16: 5156
    • 46a Xia X.-F, Zhu S.-L, Zeng M, Gu Z, Wang H, Li W. Tetrahedron 2015; 71: 6099
    • 46b Boess E, Karanestora S, Bosnidou A.-E, Schweitzer-Chaput B, Hasenbeck M, Klussmann M. Synlett 2015; 26: 1973
  • 47 Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604