

J. PEDRONI, N. CRAMER* (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND)

Chiral γ-Lactams by Enantioselective Palladium(0)-Catalyzed Cyclopropane Functionalizations *Angew. Chem. Int. Ed.* **2015**, DOI: 10.1002/anie.201505916.

Chiral γ**-Lactams by Enantioselective Cyclopropane Functionalization**

Selected examples:

Additional examples:

Significance: Cyclopropanes are important components of many biologically active molecules and they can be found fused to a pyrrolidine ring in certain medicines. The authors present a new approach to this ring system using an enantioselective C–H functionalization of a cyclopropane, enabled by a Pd/TADDOL catalyst. This work constitutes a notable advance in the field of C(sp³)–C(sp³) bond formation by C–H activation.

 SYNFACTS Contributors: Mark Lautens, Thomas Johnson

 Synfacts 2015, 11(10), 1055
 Published online: 18.09.2015

 DOI: 10.1055/s-0035-1560306; Reg-No.: L09915SF

Comment: The reaction shows good functional group tolerance and allows the synthesis of a library of diverse cyclopropane-fused pyrrolidines in high yield and with high enantioselectivity. The substrates can be accessed in a sequence by using a variant of the Kulinkovich reaction. The authors also demonstrate that the catalyst can efficiently activate methyl C–H groups in other substrates.

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

cyclopropanes
C-H bond activation

1055