Chemoselective Reduction of α,β-Unsaturated Aldehydes with AuNPore

Significance: Nanoporous gold (AuNPore) catalyzed the 1,2-reduction of α,β-unsaturated aldehydes 1 with triethylsilane. The reduction was carried out in the presence of water and triethylamine to give the corresponding allyl alcohols 2 in 42–78% yield with 82:18 to 100:0 (2/3) chemoselectivity.

Comment: Previously, the authors reported the AuNPore-catalyzed chemoselective reduction of imines with dimethylphenylsilane (Org. Lett. 2014, 16, 2558). In the reduction of cinnamyl aldehyde, the catalytic activity of AuNPore was superior to that of Au$_{30}$Ag$_{70}$ alloy, homogeneous AuCl(Ph$_3$P)/Bu$_3$P, and AuCl/IPr·HCl. ICP-MS analysis showed that no gold content was leached from the catalyst during the reaction.