PB&J: Phosphorus and Boron at the Junction of Two \(\pi \)-Systems

Significance: The 1,1-alkenyloboration of alkynes is an unique route to large conjugated \(\pi \)-systems. Erker and co-workers demonstrate that the 1,1-alkenyloboration of diarylphosphino-enynes proceeds similarly to give hexatrienes \(1 \). Upon thermolysis, two concurrent transformations occur: 6\(\pi \)-electrocyclic ring closure of the hexatriene moiety and nucleophilic aromatic substitution (SNAr) of a pentafluorophenyl group by the phosphine nucleophile to yield heterotricyclic products \(2 \).

Comment: These reactions are a convenient synthetic route to new molecules containing vicinal P/B Lewis pairs. Thermolysis products are only reported for \(1a \) and \(1b \). Would the thermolysis of \(1c \) and \(1d \), which contain bulky (Mes)\(_2 \)P nucleophiles, result in electrocyclic ring closure without concurrent SNAr?