A. VELIAN, M. NAVA, M. TEMPRADO, Y. ZHOU, R. W. FIELD, C. C. CUMMINS*
(MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, USA AND UNIVERSIDAD DE ALCALÁ, MADRID, SPAIN)

A Retro Diels-Alder Route to Diphosphorus Chemistry: Molecular Precursor Synthesis, Kinetics of P₂ Transfer to 1,3-Dienes, and Detection of P₂ by Molecular Beam Mass Spectrometry

J. Am. Chem. Soc. 2014, 136, 13586-13589.

Pass the P₂

Trapping reactions:

Significance: Cummins and co-workers have developed a novel system for thermally transferring the diphosphorus molecule P₂ from a transannular diphosphorus bisanthracene adduct **4** to various 1,3-dienes via a retro-Diels–Alder reaction.

Comment: Treatment of **4** with platinum ethylene complex $[(C_2H_4)Pt(PPh_3)_2]$ at room temperature furnishes the expected platinum diphosphorus complex $(P_2)[Pt(PPh_3)_2]_2$, broadening the scope of this P_2 precursor to inorganic complexes.

Category

Synthesis of Materials and Unnatural Products

Key words

retro-Diels-Alder reaction

phosphorus

fused ring systems

SYNFACTS Contributors: Timothy M. Swager, Sarah P. Luppino Synfacts 2014, 10(12), 1261 Published online: 18.11.2014 **DOI:** 10.1055/s-0034-1379439; **Reg-No.:** S11814SF