Synlett 2015; 26(15): 2135-2138
DOI: 10.1055/s-0034-1378803
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Allenyl Esters by Horner–Wadsworth–Emmons Reactions of Ketenes Mediated by Isopropylmagnesium Bromide

Shigeki Sano*
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Tomoya Matsumoto
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Teppei Yano
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Munehisa Toguchi
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Michiyasu Nakao
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 03 June 2015

Accepted after revision: 17 June 2015

Publication Date:
10 August 2015 (online)


Abstract

The synthesis of conjugated allenyl esters (tri-substituted allenes) was achieved by magnesium(II)-mediated Horner–Wadsworth–Emmons reaction of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate with disubstituted ketenes. In addition, a novel access to α-fluorinated allenyl carboxamides (tetrasubstituted allenes) is presented.

Supporting Information

 
  • References

    • 1a Burton BS, von Pechmann H. Ber. Dtsch. Chem. Ges. 1887; 20: 145
    • 1b Jones ER. H, Mansfield GH, Whiting MC. J. Chem. Soc. 1954; 3208
    • 2a Staudinger H, Ruzicka L. Helv. Chim. Acta 1924; 7: 177
    • 2b Maitland P, Mills WH. Nature 1935; 135: 994
    • 2c Taylor DR. Chem. Rev. 1967; 67: 317
    • 3a Brummond KM, DeForrest JE. Synthesis 2007; 795
    • 3b Kim H, Williams LJ. Curr. Opin. Drug Discovery Dev. 2008; 11: 870
    • 3c Pinho e Melo TM. V. D. Monatsh. Chem. 2011; 142: 681
    • 3d Yu S, Ma S. Chem. Commun. 2011; 47: 5384
    • 3e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 3f Alcaide B, Almendros P. Chem. Soc. Rev. 2014; 43: 2886
  • 4 Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
    • 5a Nagao Y, Kim K, Sano S, Kakegawa H, Lee WS, Shimizu H, Shiro M, Katunuma N. Tetrahedron Lett. 1996; 37: 861
    • 5b Sano S, Shimizu H, Nagao Y. Tetrahedron Lett. 2005; 46: 2883
    • 5c Sano S, Shimizu H, Kim K, Lee WS, Shiro M, Nagao Y. Chem. Pharm. Bull. 2006; 54: 196
    • 6a Nagao Y, Sano S, Morimoto K, Kakegawa H, Takatani T, Shiro M, Katunuma N. Tetrahedron Lett. 2000; 41: 2419
    • 6b Takeuchi Y, Fujiwara T, Shimone Y, Miyataka H, Satoh T, Kirk KL, Hori H. Bioorg. Med. Chem. Lett. 2008; 18: 6202
    • 7a Horner L, Hoffmann H, Wippel HG, Klahre G. Chem. Ber. 1959; 92: 2499
    • 7b Wadsworth WS. Jr, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 7c Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 7d Bisceglia JA, Orelli LR. Curr. Org. Chem. 2012; 16: 2206
    • 7e Al Jasem Y, El-Esawi R, Thiemann T. J. Chem. Res. 2014; 38: 453

      For examples of HWE reactions, see:
    • 8a Runge W, Kresze G. Justus Liebigs Ann. Chem. 1975; 1361
    • 8b Tanaka K, Otsubo K, Fuji K. Tetrahedron Lett. 1996; 37: 3735
    • 8c Yamazaki J, Watanabe T, Tanaka K. Tetrahedron: Asymmetry 2001; 12: 669
    • 8d Nagaoka Y, Inoue H, Tomioka K. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 1843
    • 8e Inoue H, Tsubouchi H, Nagaoka Y, Tomioka K. Tetrahedron 2002; 58: 83
    • 8f Huang X, Xiong Z.-C. Chem. Commun. 2003; 1714
    • 8g Plunkett S, Dahms K, Senge MO. Eur. J. Org. Chem. 2013; 1566

      For examples of Wittig reactions, see:
    • 9a Kresze G, Runge W, Ruch E. Justus Liebigs Ann. Chem. 1972; 756: 112
    • 9b Bestmann H.-J, Hartung H. Chem. Ber. 1966; 99: 1198
    • 9c Aksnes G, Frøyen P. Acta Chem. Scand. 1968; 22: 2347
    • 9d Lang RW, Hansen H.-J. Helv. Chim. Acta 1979; 62: 1025
    • 9e Lang RW, Hansen H.-J. Helv. Chim. Acta 1980; 63: 438
    • 9f Himbert G, Fink D. J. Prakt. Chem. 1997; 339: 233
    • 9g Pinho e Melo TM. V. D, Cardoso AL, d’A Rocha Gonsalves AM, Costa Pessoa J, Paixão JA, Beja AM. Eur. J. Org. Chem. 2004; 4830
    • 9h Li C.-Y, Sun X.-L, Jing Q, Tang Y. Chem. Commun. 2006; 2980
    • 9i Li C.-Y, Wang X.-B, Sun X.-L, Tang Y, Zheng J.-C, Xu Z.-H, Zhou Y.-G, Dai L.-X. J. Am. Chem. Soc. 2007; 129: 1494
    • 9j Li C.-Y, Zhu B.-H, Ye L.-W, Jing Q, Sun X.-L, Tang Y, Shen Q. Tetrahedron 2007; 63: 8046
    • 9k Liu W.-B, He H, Dai L.-X, You S.-L. Chem. Eur. J. 2010; 16: 7376
  • 10 DeHoff B, Roy M.-N. Methyl bis(2,2,2-trifluoroethoxy)phos­phinylacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis . Wiley; New York: 2012
  • 12 Typical Procedure: To a solution of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (1; 40 μL, 0.188 mmol) in anhydrous THF (1.9 mL) was added i-PrMgBr (0.77 mol/L in THF, 269 μL, 0.207 mmol), and the solution was stirred at 0 °C for 1 h under argon. After adding triethylamine (53 μL, 0.377 mmol) and 2-phenylpropionyl chloride (5a; 56 μL, 0.377 mmol), the mixture was stirred at 0 °C for 1 h under argon. The reaction mixture was treated with sat. aq NH4Cl (2 mL) and then extracted with CHCl3 (3 × 20 mL). The extract was dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The oily residue was purified by silica gel column chromatography (n-hexane–EtOAc, 12.5:1 to 11:1) to afford allenyl ester 6a (34.7 mg, 98%)
  • 13 Data for 6a: Pale-yellow oil; IR (neat): 2951, 1948, 1722, 1495, 1437, 1392, 1263, 1209, 1151 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.21 (d, J = 2.9 Hz, 3 H), 3.75 (s, 3 H), 5.90 (q, J = 2.9 Hz, 1 H), 7.27–7.28 (m, 1 H), 7.33–7.40 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 16.2, 52.1, 89.5, 105.5, 126.2, 127.9, 128.6, 134.3, 166.1, 214.0. MS (ESI): m/z [M + Na]+ calcd for C12H12NaO2: 211.0735; found: 211.0732. Anal. Calcd for C12H12O2: C, 76.57; H, 6.43. Found: C, 76.27; H, 6.54.
    • 14a Sano S, Ando T, Yokoyama K, Nagao Y. Synlett 1998; 777
    • 14b Sano S, Teranishi R, Nagao Y. Tetrahedron Lett. 2002; 43: 9183
    • 14c Sano S, Takemoto Y, Nagao Y. ARKIVOC 2003; (viii): 93
    • 14d Sano S, Takemoto Y, Nagao Y. Tetrahedron Lett. 2003; 44: 8853
    • 14e Sano S, Matsumoto T, Nanataki H, Tempaku S, Nakao M. Tetrahedron Lett. 2014; 55: 6248
  • 15 Roy M.-N. Ethyl 2-(diphenoxyphosphinyl)acetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis . Wiley; New York: 2013
    • 17a Sano S, Takehisa T, Ogawa S, Yokoyama K, Nagao Y. Chem. Pharm. Bull. 2002; 50: 1300
    • 17b Sano S, Abe S, Azetsu T, Nakao M, Shiro M, Nagao Y. Lett. Org. Chem. 2006; 3: 798
  • 18 Jiang J. Triethyl 2-fluoro-2-phosphonoacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis . Wiley; New York: 2006
    • 19a Machleidt H, Wessendorf R. Justus Liebigs Ann. Chem. 1964; 674: 1
    • 19b Burton DJ, Yang Z.-Y, Qui W. Chem. Rev. 1996; 96: 1641
  • 20 Xu B, Hammond GB. Angew. Chem. Int. Ed. 2008; 47: 689
  • 21 Boumendjel A, Nuzillard J.-M, Massiot G. Tetrahedron Lett. 1999; 40: 9033
  • 22 Data for 14a: Yield: 37.6 mg (quant.); yellow oil. IR (neat): 2937, 1954, 1652, 1462, 1444, 1417, 1386, 1155 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.35 (d, 5 J C–F = 8.3 Hz, 3 H), 3.26 (s, 3 H), 3.51 (s, 3 H), 7.31–7.40 (m, 3 H), 7.49–7.53 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 18.3, 33.7, 61.6, 118.9 (d, 3 J C–F = 12.0 Hz), 126.8 (d, 5 J C–F = 2.7 Hz), 128.7, 129.1 (d, 6 J C–F = 1.7 Hz), 129.6 (d, 1 J C–F = 234.8 Hz), 134.4 (d, 4 J C–F = 1.7 Hz), 162.0 (d, 2 J C–F = 40.1 Hz), 193.2 (d, 2 J C–F = 18.7 Hz). MS (ESI): m/z [M + Na]+ calcd for C13H14FNNaO2: 258.0906; found: 258.0896. Anal. Calcd for C13H14FNO2: C, 66.37; H, 6.00; N, 5.95. Found: C, 66.08; H, 6.02; N, 5.89.