Stereoselective Synthesis of syn-Homoallylic Alcohols

$R^{1}, R^{2}=$ Alk, various substituted Ar

Selected examples:

96\% yield
syn/anti > 98:2

99\% yield syn/anti> 98:2

95\% yield syn/anti > 98:2

80% yield
syn/anti> 98:2

up to 99% yield syn/anti up to $>95: 5$

96\% yield
syn/anti > 98:2

79% yield
syn/anti > 98:2

Significance: The authors established a new synthetic method for the synthesis of syn-homoallylic alcohols from terminal alkynes and aldehydes. As this transformation utilizes easily accessible starting materials, this practical method should find many applications.

Comment: A cationic rhodium(I) catalyst turns 2-silyl-1-alkenylboronates, which can be easily prepared from a terminal alkyne, into the corresponding allylboronate, that directly undergoes nucleophilic addition to an aldehyde to afford the corresponding syn-homoallylic alcohol in excellent stereoselectivity.

[^0]
[^0]: SYNFACTS Contributors: Paul Knochel, Jeffrey M. Hammann
 Synfacts 2014, 10(8), 0849 Published online: 18.07.2014
 DOI: 10.1055/s-0034-1378489; Reg-No.: P08314SF

