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Abstract
!

In the first decade of the twenty-first centu-
ry, whole-body magnetic resonance scan-
ners with high field strengths (and thus po-
tentially better signal-to-noise ratios) were
developed. At the same time, parallel ima-
ging and “echo-sharing” techniques were re-
fined to allow for increasingly high spatial
and temporal resolution in dynamicmagnet-
ic resonance angiography (“time-resol-
ved” =TR-MRA). This technological progress
facilitated tracking the passage of intra-ve-
nously administered contrast agent boluses
as well as the acquisition of volume data
sets at high image refresh rates (“4D-MRA”).
This opened doors for many new applica-
tions in non-invasive vascular imaging, in-
cluding simultaneous anatomic and func-
tional analysis of many vascular pathologies
including arterio-venous malformations.
Different methods were established to ac-
quire 4D-MRA using various strategies to ac-
quire k-space trajectories over time in order
to optimize imaging according to clinical
needs. These include “keyhole”-based tech-
niques (e. g. 4D-TRAK), TRICKS – both with
and without projection – and HYPR-recon-
struction, TREAT, and TWIST. Some of these
techniques were first introduced in the
1980 s and 1990 s, were later enhanced and
modified, and finally implemented in the
products of major vendors. In the last dec-
ade, a large number of studies on the clinical
applications of TR-MRA was published. This
manuscript provides an overview of the de-
velopment of TR-MRA methods and the 4D-
MRA techniques as they are currently used
in the diagnosis, treatment and follow-up of
vascular diseases in various parts of the
body.

Key statements

▶ 4D-MRA, which differs according to manu-
facturer, generates high temporal and spa-
tial resolution MRA volume data sets.

▶ Key differences in 4D-MRA techniques con-
cern the sequence of the acquisition of
k-space portions.

▶ Central k-space portions define image con-
trast and are thus repetitively scanned
with 4D-MRA.

▶ Numerous clinical applications of 4D-MRA
are already documented in the literature.

Citation Format:

▶ Hadizadeh DR., Marx C, Gieseke J et al. High
temporal and high spatial resolutionMR an-
giography (4D-MRA). Fortschr Röntgenstr
2014; 186: 847–859

Zusammenfassung
!

Im ersten Jahrzehnt des 21. Jahrhunderts wurden
Ganzkörper-Magnetresonanztomografen mit hö-
heren Feldstärken (und damit potenziell besserem
Signal-zu-Rausch-Verhältnis) entwickelt. Dies und
die nahezu zeitgleiche Entwicklung bzw. Verfeiner-
ung von Techniken wie der parallelen Bildgebung
und „Echo-sharing“ erlaubten ein zunehmend hö-
heres räumliches und zeitliches Auflösungsvermö-
gen in der dynamischen Magnetresonanzangiogra-
fie („Time-resolved“=TR-MRA). Somit konnten
erstmals sowohl die Passage eines Kontrastmittel-
bolus mit einer angemessenen räumlichen Auflö-
sung verfolgt als auch Volumendatensätze mit ho-
hen Bildauffrischungsraten erzeugt werden („4D-
MRA“). Damit eröffneten sich neue Optionen der
nicht invasiven Gefäßdiagnostik, wie beispiels-
weise die gleichzeitige anatomische und funktio-
nelle Analyse von Gefäßmalformationen. Es wur-
den zahlreiche unterschiedliche Methoden
eingeführt, bei denen die Akquisitionen der k-
Raum-Trajektorien strategisch unterschiedlich
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Introduction
!

MR angiography strategies have undergone constant refine-
ment since the introduction of contrast-enhancedMR angio-
graphy by Prince et al. in 1993 and dynamic imaging using
the “keyhole” method by van Vaals et al. and Jones et al. that
same year. In particular, parallel imaging had a large impact
on increasing the temporal efficiency of data collection suffi-
ciently dynamically showing the contrast medium bolus pas-
sage in the blood vessel with high spatial resolution [1–5].
For the simultaneous imaging of flow dynamics and vascular
anatomy, the invasive method of catheter angiography in the
form of digital subtraction angiography (DSA) is the refer-
ence standard against which all new methods have to com-
pete.
Dynamic information about blood flow in vessels is essen-
tial for functional analysis of arterial inflow and venous
outflow of vascular malformations, for example. However,
TR-MRA can also be helpful when it is necessary to image
multiple vascular territories simultaneously while adminis-
tering low doses of contrast medium, e. g. in children and
patients who can tolerate only short examination times
[6, 7]. 4D-MRA is generally useful for every clinical problem
involving a short arteriovenous transit time, for example in
the pulmonary artery flow path, where it has ben used to
investigate arteriovenous fistulae and shunts [8–13]. This
review provides an overview of the temporal resolution
MR angiography techniques currently used routinely and
their development, while presenting various clinical appli-
cations in which these techniques have already been em-
ployed successfully. Diagnosing cerebral arteriovenous mal-
formations (cAVM) is an example of a key clinical
application for comparing individual methods, since these
malformations can be examined using all of the techniques
described in the article, and data from prospective studies
have already been published and in turn cited in this article.

The development of temporal resolution
MR angiography techniques
!

The first temporal resolutionMR sequences were developed
to roughly image the bolus passage of contrast agents and
thereby ascertain bolus arrival time. For this purpose, T1-
weighted gradient echo techniques single-thick slice-

(known as 2D-MRA) were created. At that time, however,
significant compromises had to be made in terms of spatial
resolution to facilitate achieving the requisite very short
time intervals of 1–2 seconds [14–16].
This idea of dynamically tracking a contrast medium bolus
(integrated with a mask subtraction of non-contrast ima-
ges) is indispensable for planning and facilitating precise
temporal initiation of static sequences such as high spatial
resolution volume data sets (3D-CEMRA), which absolutely
require precise “timing”, i. e. a precise starting time (fluoro-
scopic triggering).
T1-weighted 2D-multi-slice and 3D-gradient echo sequen-
ces are generally suited for showing the arrival of a contrast
medium bolus with a high signal-to-noise ratio. However,
to achieve a high image refresh rate in this process, it is nec-
essary to limit the k-space portions that are actually scan-
ned. First, image acquisition was accelerated using above
all the symmetry characteristics of the k-space. Major ad-
vancements in the acceleration of dynamic sequences were
then achieved through the introduction of parallel imaging
[17–19], the use of higher field strengths with a more fa-
vorable signal-to-noise ratio and the use of complex, strate-
gic k-space acquisition schemes. One such scheme is “echo
sharing”, which is the practice of strategically distributing
k-space acquisition over the sequence duration and using a
certain temporal interpolation to reconstruct k-space. What
is critical here is that the portion of k-space (central por-
tion) that essentially determines image contrast is scanned
at a higher frequency than k-space portions (peripheral
portions) that are less significant to image contrast. This al-
lows contrast change to be mapped over time even if only a
small portion of k-space is actually acquired per dynamic
phase [20, 21]. Through the use of higher field strengths
and improved coils [11, 22–24] sequences were established
in the last decade that simultaneously facilitate both high
temporal and spatial resolution in dynamic vascular ima-
ging. The result was a steady increase in publications on
the field of 4D-MRA which continues to this day (●" Fig. 1a).
Because the development of these complex techniques re-
quired close cooperation between clinical institutions and
commercial partners, the various “echo-sharing” tech-
niques were used mostly in a manufacturer-specific man-
ner (●" Table 1). These techniques are listed in this review ac-
cording to method.
As mentioned above, that was used to accelarate dynamic
imaging cAVM are especially well suited for testing the ef-
fectiveness of 4D-MRA. This clinical picture was therefore
examined in clinical studies using each of the methods in-
troduced, resulting in data that facilitates good comparison.
The currently employed “echo-sharing” techniques are in-
troduced below and compared using the example of cAVM
imaging in view of the good body of data:

“Keyhole”-based techniques
!

In 1993, the same year contrast-enhanced 3D-CEMRA was
introduced by Prince et al., Van Vaals et al. and Jones et al.
described separate techniques which involved repetitively
scanning the central k-space, while acquiring the peripheral
k-space only once. Afterwards, missing information from the
one-time scanning of the peripheral k-space is added to each

über den Akquisitionszeitraum verteilt wurden, um optimale kli-
nische Ergebnisse zu erlangen. Dazu zählten beispielsweise Verfah-
ren wie „Keyhole“-basierte Techniken (z. B. 4D-TRAK), TRICKS mit
und ohne Projektions- und HYPR-Rekonstruktion, TREAT und
TWIST. Einige dieser Techniken wurden bereits in den 80er- und
90er-Jahren vorgestellt, in der Folge weiterentwickelt und modifi-
ziert und schließlich in handelsübliche MR-Tomografen der ver-
schiedenen Hersteller implementiert. In der letzten Dekade wur-
den schließlich zahlreiche Studien zu klinischen Anwendungen
der TR-MRA vorgestellt. Dieses Manuskript bietet eine Übersicht
über die Entwicklung der TR-MRA-Verfahren und die gegenwärtig
eingesetzten 4D-MRA-Techniken wie sie derzeit Ihren klinischen
Einsatz bei der Diagnose, Behandlung und bei Verlaufsuntersu-
chungen von Gefäßerkrankungen in unterschiedlichen Körperre-
gionen finden.
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of the incomplete, central, dynamic data sets to finally gener-
ate complete k-space data sets for each point in time [2, 3].
The complete data set from which the missing k-space por-
tions are “borrowed” is identified as the reference data set

and is usually acquired after the dynamic phases upon com-
pletion of the sequence. In only 1993 Van Vaals declared
that the “keyhole" technique should be combined with

Fig. 1 Original publications on time-resolved MRA between 2000 and 2012; a Number of publications related to field strength; b Publications broken down
by TR-MRA technique.

Hadizadeh DR et al. High temporal and… Fortschr Röntgenstr 2014; 186: 847–859

Review 849

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



other accelerationmethods “based on different principles” to
achieve even higher acceleration.
This predicted development was realized in the subsequent
two decades as a result of different techniques facilitating
accelerated data acquisition actually being developed.
“Temporal resolution MR angiography with CENTRA-Key-
hole” (4D-TRAK, Philips Healthcare, Best, Netherlands) re-
presents the combination of multiple acceleration tech-
niques with keyhole imaging and already enjoys routine
clinical use. This technique combines the keyhole principle
with a randomized acquisition of central k-space data (CEN-
TRA-Keyhole), parallel imaging (SENSE) with high accelera-
tion factors and half-Fourier acquisition [25–27]. Further
refinement of the technique involves subdividing the cen-
tral k-space partition (the “keyhole window”) into three
smaller fractions, which are likewise acquired alternatingly
(temporal resolution MR angiography with keyhole and
view sharing [4D-TRAK+];●" Fig. 2a) [28].
Keyhole techniques were used for examining the abdomen,
thorax and extremities as well as the head and neck at 1.5 T
[29–36] and the pelvis, thorax and extremities as well as
the head and neck at 3.0 T [26, 28, 37–47].
For example, these techniques allowed the imaging of surgi-
cally created shunt connections between the superior vena
cava and the pulmonary artery during Fontan procedures.
This technique was likewise used to image dialysis shunts
or to acquire purely arterial images of the lower leg region
in cases of asymmetrical contrast perfusion.
In principle limitations in the complete suppression of the
venous signal can appear with keyhole-based techniques if
too small a fraction of the central k-space is selected. Cau-
tion is advised when using very high compression factors
with 4D-TRAK+, since a flickering artefact can appear in ci-
nematic view [28]. This is based on the fact that 100% sym-
metrical boundary conditions are never present in k-space
due to noise and that when high compression factors are
present only positive or negative central k-space portions
can be used for image reconstruction on an alternating ba-
sis. This results in deviations, albeit minor, in image contrast
(“flickering”). Taking these limitations into account, a tem-
poral resolution of 572ms at a simultaneous spatial resolu-
tion of (1.1 × 1.1 ×1.1)mm³ was achieved when 4D-TRAK+
was used for examining cAVM, for example, while imaging
all cranial blood vessels [41].

TRICKS
!

In 1996 Korosec et al. described a technique named 3D-
TRICKS (time-resolved imaging of contrast kinetics) [42] in
which different k-space portions are acquired over a period
of time, and missing portions are borrowed from prior or
subsequent data sets (●" Fig. 2b) in the sense of a temporal
interpolation [43].
The peripheral (higher frequency) portions of k-space (B, C
and D) are scanned three times less frequently than the cen-
tral (lower frequency) portions (A). Using these k-space
fractions, data collection is repeated according to the fol-
lowing sequence, for example: D, A, C, A, B, A. In addition,
the entire k-space is scanned at the beginning and end of
the TR-MRA sequence with all of its four portions.
Various enhancements to this acquisition schemewere sub-
sequently developed. For example, (PR)-TRICKS uses radial
projection reconstructions on the kxky plane combined
with a variable k-space scanning rate for accelerated dy-
namic data acquisition [44]. Cartesian coding is then em-
ployed in the slice encoding direction. The next step was
“HYPR TRICKS”, which added “highly-constrained back-
projection reconstruction“ (HYPR) to improve the dynamic
low-frequency data of the TRICKS-algorithm as well as (by
means of high-frequency data) the signal-to-noise ratio
and thus both temporal as well as spatial resolution with
the aid of an additional high-resolution data set following
venous filling [45, 46]. Combining all of these methods
(HYPR PR-TRICKS), however, results in high sensitivity to
patient movements, which can in turn compromise image
quality [47]. It is therefore necessary to precisely weigh the
advantages and disadvantages of these highly complex ac-
quisition schemes to find the ideal compromise for the
particular clinical application. Applications for the abdo-
men, thorax, extremities and head and neck at 1.5 T [48–
64] and for the head and neck as well as the extremities at
3.0 T [65–72] have been published.
Literature contains examples of clinical applications of
TRICKS-4D-MRA for pulmonary angiographies, for diagnos-
ing carotid-cavernous sinus fistulae as well as for improved
diagnosing of diseases in the arteries of the lower legs, par-
ticularly in patients with diabetes mellitus. As with all 4D-
MRA techniques, limitations of the TRICKS technique can
appear through temporal interpolation.

Table 1 Time-resolved contrast-
enhanced TR-MRA techniques.1

TR-MRA technique year field strength manufacturer

keyhole 1993 1.5 T Philips Healthcare, Best, Netherlands

4D-TRAK 2008 1.5 T Philips Healthcare, Best, Netherlands

2008 3.0 T Philips Healthcare, Best, Netherlands

4D-TRAK+ 2011 3.0 T Philips Healthcare, Best, Netherlands

TRICKS 1996 1.5 T General Electric Healthcare, Milwaukee, WI, USA

PR-TRICKS 2002 1.5 T General Electric Healthcare, Milwaukee, WI, USA

HYPR PR-TRICKS 2006 1.5 T General Electric Healthcare, Milwaukee, WI, USA

2007 3.0 T General Electric Healthcare, Milwaukee, WI, USA

TREAT 2005 1.5 T Siemens Healthcare, Erlangen, Deutschland

2006 3.0 T Siemens Healthcare, Erlangen, Deutschland

TWIST 2008 1.5 T Siemens Healthcare, Erlangen, Deutschland

2010 3.0 T Siemens Healthcare, Erlangen, Deutschland

1 Year = year first described in technical literature; Manufacturer =manufacturer of the MR systems on which the indicated technique was
implemented at the time
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In the case of HYPR-TRICKS techniques, low data density
(“sparsity”) can result in signal fluctuations. It was shown
that very high image refresh rates can be achieved with
HYPR-TRICKS while employing to some extent very com-
plex reconstruction algorithms and extremely low portions
of actually acquired data. Based on the clinical application
example of examining cAVM, an image refresh rate of 0.8 s
at a voxel size of 0.5 ×0.75 ×4mm³ was achieved using a
TRICKS algorithm [69].

TREAT
!

TREAT (time-resolved echo-shared angiography technique)
was first described in 2005 by Fink et al. and divides the k-
space into n regions (for example, regions A, B, C and D

when n=4) [73]. Each region covers an equal portion of
k-space and thus the same number of (ky, kz) points
(●" Fig. 2c).
Following complete k-space acquisition, the scanning of the
central segment A and one of the peripheral segments B, C
or D alternates similar to the scheme employed in the
TRICKS technique. To reconstruct the images, complete k-
space data is generated by summarizing the k-space data of
the next consecutive acquisitions.
For a segmentation pattern with n segments, a complete
data set can then be reconstructed in intervals of 2 • TA/n
(TA being the time needed for obtaining a complete data
set). However, as the number of segments increases, the sig-
nal intensity is distributed further over the image plane, re-
sulting in increasingly less defined smaller blood vessels.
Numerous studies use this technique on various regions of
the body at 1.5 T [12, 73–83] and in the head and neck at
3.0 T [85–88]. Among the published indications for these
examinations are the imaging of pathological flow condi-
tions with the occurrence of endoleaks in cases of aortic
prostheses, [76] as well as diagnosing pulmonary embo-
lisms [83] or subclavian steal syndromes [84]. Possible lim-
itations arise from the fact that each data set is reconstruc-
ted from similarly sized portions of k-space partitions from
various points in time and is thus interpolated over time.
This particularly effects the imaging of small blood vessels
to the extent that neighboring small arteries and veins can
no longer be distinguished from one another. Using the
TREAT algorithm, a temporal resolution of 1.5 s per 3D
data set with a simultaneous spatial resolution
1.2 ×1.0 ×4mm3 was achieved when imaging cAVM [88].

TWIST
!

The details of the TWIST technique (time-resolved imaging
with stochastic trajectories) were reported by Vogt, Lim and
Song over the period of 2007 to 2009 [89–91]. In this tech-
nique, all points in the k-space are sorted according to their
radial distance from the center of the k-space. A critical ra-
dial distance can be defined around the k-space and subdi-
vided into two subareas, a central region A (low-frequency
portions) and a peripheral region B (high-frequency por-
tions) (●" Fig. 2d).
During data acquisition, the data of the entire k-space is
gathered only once, either at the beginning or end of the se-
quence. For the dynamic phase of image acquisition, the en-
tire region A within each time window is acquired, while
one of n portions is scanned from region B, and missing
data points are taken from temporally adjacent acquisitions
of region B for complete k-space reconstruction.
In this process, the k-space trajectories of region B follow a
spiral pattern on the ky-kz plane, with the trajectories from
region B being intertwined with one another, giving the se-
quence its name. With TWIST, acceleration is based on both
the size of region A and the density of trajectories in region
B. This technique has been used on the abdomen, thorax,
extremities as well as on the head and neck at both 1.5 T
[92–96] and 3.0 T [92, 97–104]. TWIST has likewise been
used to image ovarian vein reflux [92] as well as thoracic ve-
nous outflow obstructions [94], examine pathologies of the
abdominal aorta [100] and successfully diagnose changes in

Fig. 2 K-space acquisition using various 4D-MRA techniques; K-space ac-
quisition schemes in phase encoded (ky), slice encoded (kz) and frequency
encoded direction (kx). A “zero filling” non-acquired k-space regions is not
illustrated in graphics a through d. a Keyhole acquisition with view-sharing
(4D-TRAK+): During dynamic imaging phase, either segment A or one of
the segments B and C is scanned on an alternating basis. Area D is scanned
following the dynamic acquisition phase and added to all dynamic acquisi-
tions. b 3D-TRICKS: Initial concept with four equally sized Ky-segments
(containing the same number of (ky, kz) points) with A, B, C and D. Either
segment A or one of the segments B, C and D is scanned on an alternating
basis. Complete k-spaces are yielded by putting together all temporally
neighboring segments A, B, C and D. c TREAT: Concept with n possible re-
gions. The regions A, B, C and D contain the same number of (ky, kz) points
and are divided according to their distance from the center of the k-space
into the innermost segment A and the additional peripherally located seg-
ments B, C and D. Either segment A or one of the segments B, C and D are
scanned on an alternating basis, and complete K-spaces are yielded in turn
by putting together the temporally neighboring segments A, B, C and D.
d TWIST: In each dynamic phase the central portion of k-space is scanned,
while only a fraction of the peripheral region B is scanned. This region is
comprised of elliptical trajectories interwoven (“twisted”) with one an-
other. Missing data needed for assembling a complete k-space are taken
from the respective temporally neighboring dynamic phases.
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flow conditions in cases of peripheral occlusive arterial dis-
ease [97]. However, the complex acquisition pattern of
TWIST data recording with its data collection interwoven
over the acquisition time poses special challenges for as-
signing artefacts to certain k-space portions, which is
made even more difficult by the fact that artefacts are al-
ways present in multiple consecutive data sets because of
the temporal interpolation reconstructed of the data. Re-
gardless of these limitations, patients with cAVM, for exam-
ple, have been successfully examined at a temporal resolu-
tion of 0.58 s and a voxel size of (1.6 × 1.6 ×1.6)mm3 [103]

Summary and supplemental technical observations
!

While implementing TR-MRA demands high standards for
software and hardware, current tomography machines
from major manufacturers implement high-quality manu-
facturer-specific TR-MRA sequences. Each of these tech-
niques has its pros and cons that would make particular
methods appear to be optimal for particular cases.
It must be emphasized that images reconstructed from
complex temporally intertwined data generally do not cor-
respond to any exact visualization of a single time point
(temporal interpolation). However, the central k-space por-
tions used exclusively at a particular point in time are es-
sential for the image contrast of the corresponding image
so that the contrast curve can be realistically mapped.
Because of the potential cons of this temporal interpolation,
Riederer et al. have introduced the concept of “temporal
footprint" of high temporal resolution sequences. This con-
cept describes the period of time that is needed to acquire a
complete k-space data set, i. e. the entire k-space portions.
Dividing the k-space into multiple portions in the process
of time-resolved imaging would produce the following
"temporal footprint" in which the exemplary constellation
has 4 equal-sized portions A-D (acquisition duration 1 s
each, A = central k-space portion):
Example 1 (●" Fig. 3a): Acquisition in the sequence A, B, C,
D...; central k-space portions are acquired every 4s; the
temporal footprint is the product of the summation of indi-

vidual k-space portions A-D, with the acquisition time be-
tween each being omitted, resulting in a temporal foot-
print = 4 s.
Example 2 (●" Fig. 3b): Acquisition in the sequence A, B, A, C,
A, D…; central k-space portions are acquired alternatingly
with peripheral k-space portions B, C or D every 2 s. The
temporal footprint is, in contrast, the product of the sum-
mation of individual k-space portions A-D plus the inter-
mediate acquisition times, resulting in this case in a tem-
poral footprint = 6 s.
In Example 2, contrast information is accordingly refreshed
every 2 s, while only every 4 s in Example 1. However, Ex-
ample 1 is the temporally “cleaner” representation, since
the temporal footprint is shorter. For TRICKS, TREAT and
TWIST the “temporal footprint” is in each case accordingly
a multiple of the time duration of an individual dynamic
phase and reflects the period of time over which the acqui-
sition of a complete k-space data set extends.
On the other hand, it would not be wise to apply this con-
cept to keyhole-based methods, since the entire peripheral
k-space in this instance is acquired only once, which would
thus yield periods of differing length for the “temporal foot-
print”, each depending on what point in time the acquisi-
tion of the central k-space is observed [28].
Regardless of the technique employed, a high degree of
temporal accuracy in the collected dynamic data is desired
in clinical applications. Future studies are needed to more
accurately examine which technique constitutes the opti-
mal compromise between temporal interpolation, “tempor-
al footprint” and image for a particular clinical problem
[105, 106].
For precisely imaging smaller structures, in particular, the
signal-time-curve (“point spread function”) is ultimately of
special importance. Temporal interpolation can result in in-
ferior definition that can manifest itself in, for example, lim-
itations in imaging small arterial supply vessels of arteriove-
nousmalformations [26, 107]. With increasing segmentation,
the inferior definition of the peak of the signal-to-time curve
becomes more pronounced, which also limits the degree of
the possible segmentation steps in the increasingly complex
acquisition schemes [73].

Fig. 3 Image refresh rate (contrast refresh)
scheme compared to "temporal footprint" in the
case of two different acquisition schemes a, b.
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Clinical perspectives
!

The technical methods for acquiring 3D-CEMRA image ser-
ies, some of which are highly complex, are already facilitat-
ing detailed observation of numerous pathological changes
in flow that were previously the domain of invasive DSA.

●" Fig. 1b provides a quantitative overview of which meth-
ods have come into use in the past few years.●" Fig. 3–6 pro-
vide several examples of images, while●" Table 2 offers an
overview of clinical applications to date and shows the mul-
tifaceted application possibilities of 4D-MRA. Established
routine clinical applications in the meantime include the
diagnosis of arteriovenous malformations or fistulae. Unlike
conventional static sequences, these applications allow the
imaging of premature filling of veins or sinuses by shunt
mechanisms. Pathological flow conditions that would
otherwise be possible to reconstruct only with invasive

methods can likewise be shown in cases of aortic dissec-
tions, endoleaks from aortic prostheses or subclavian steal
syndrome. Finally, themethod sees frequent routine clinical
use in generating purely arterial images of the lower leg in
cases of asymmetrical arterial filling due to upstream steno-
ses (in peripheral occlusive arterial disease) or arteriove-
nous shunts (often in cases of diabetic microangiopathy).
In these cases, precise timing for adjusting arterial perfu-
sion and thus a pure arterial 3D-CEMRA is oftentimes not
possible.
That cAVM was examined notably using 4D-MRA tech-
niques [23, 26, 61, 69, 72, 103, 150–153], can be explained
by the fact that on the one hand intracranial vessels are par-
ticularly suited given their fundamentally low susceptibility
to artefacts in view of the circumscribed examination vol-
ume without significant patient movements including
breathing. On the other hand, the dynamic information of-

Fig. 4 75-year old patient with stage III peripheral arterial occlusive dis-
ease, ambulant < 50m, complaints primarily on the right side. Total volume
maximum intensity projections of high temporal resolution 4D-MRA show
the lower legs prior to arrival of contrast agent (a), arterial bolus passage

(b–d), and premature venous enhancement in the right lower leg resulting
from a shunt between the right peroneal artery (arrows in d, e) and the
great saphenous vein, as well as venous filling in a later phase f.
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fers especially high potential benefits, and the reference
standard of DSA is frequently on hand for comparative pur-
poses.
TR-MRA, however, also opens numerous new diagnostic
avenues. For example it is conceivable when using an intra-
vascular contrast agent to first acquire detailed functional
information with the aid of TR-MRA (e. g. for diagnosing a
pulmonary embolism) and then to image an underlying leg
vein thrombosis with the aid of a high-resolution spatial se-
quence [154, 155]. Primarily intravascularly dwelling con-
trast agents of this type with reversible protein binding
and thereafter considerably delayed pervasion of the inter-
stitium are currently available only in North America.
In the studies on clinical applications of TR-MRA some of
which involved high image refresh rates and high spatial re-
solution, the majority of temporal information was dis-

played and at the same time the contrast agent dose admi-
nistered was oftentimes significantly reduced compared to
the static, high spatial resolution 3D-CEMRA. In the future,
combining echo-sharing techniques with special data re-
construction methods using only a fraction of the actually
required data (HYPR, compressed sensing) may possibly al-
low even significantly higher image refresh rates, thereby
facilitating the generation of real-time sequences and de-
tailed examination of flow conditions [156, 157].
Disadvantages compared to DSA resulting from the simulta-
neous contrast agent perfusion in all vascular segments (a
not insignificant advantage of DSA is the possibility of selec-
tive contrast agent administration) are compensated partly
with a vascular selective excitement using what is known as
arterial spin labelling (ASL) [34, 158]. In the future, further
insight on flow dynamics may possibly be gained through

Fig. 5 69-year old female patient with acute swelling of the left arm pre-
senting septic clinical picture, imaging performed to exclude thrombosis.
Representative total volume maximum intensity projections per one phase

of 4D-MRA prior to arrival of contrast agent bolus a, during arterial bolus
passage b and during venous phase of contrast agent passage c.

Table 2 Clinical applications of
TR-MRA.

bodily region clinical problem references

head carotids [95, 114 – 116]

cerebral arteriovenous fistulae and malformations [33, 47, 65, 117 – 119]

cavernous hemangioma [117, 120]

sinus thrombosis [33, 121]

multiple sclerosis [122 – 124]

orbital lesions [65, 125]

spinal column spinal arteries [30, 71, 126]

arteriovenous fistulae and malformations [54, 72, 76]

thorax/abdomen aortic dissection [17, 127]

aortic isthmus stenosis [128]

pulmonary embolisms [63]

pulmonary perfusion [9, 10, 12, 13, 29]

pulmonary hypertension [8, 11]

arteriovenous malformations [36, 129]

endoleaks from vascular prostheses [82, 130, 131]

subclavian steal syndrome [90]

coronary vessels [132 – 134]

renal artery stenoses [135 – 137]

pelvic congestion [32, 57, 98, 138, 139]

arteries of the
extremities

asymmetrical contrast perfusion [56, 99, 140 – 143]

arteriovenous malformations [144 – 146]

diabetic microangiopathy [31, 147 – 150]
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Fig. 6 25-year old male patient before a– f and after g– l surgical resection of a right frontal cerebral arteriovenous malformation (arrow in d) in a non-
eloquent area of the brain. Lateral total volume maximum intensity projections of temporally corresponding phases of contrast-enhanced 4D-MRA.
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techniques such as high temporal and spatial resolution and
at the same time quantitative phase contrast angiography
(4D-PC-MRA), which has lately shown considerable pro-
mise [159–165]. Finally, real-time imaging, for example
during catheter interventions with susceptibility markers,
is a promising area of application for 4D-MRA. However,
this is the subject of predominantly preclinical studies
[165, 167].

Summary
!

TR-MRA was initially used only for facilitating fluoroscopic
bolus triggering and gaining exact timing for performing a
high spatial resolution static, pure arterial 3D-CEMRA, for
instance, of the supra-aortic arteries. With the aid of com-
plex k-space acquisition algorithms, parallel imaging and
new echo-sharing techniques while at the same time at
higher spatial resolution. This is opening up new areas of
application that hadmainly eluded non-invasive testing un-
til now. It will be exciting to see what benefits further tech-
nological advancements in both coil and scanner technolo-
gy, such as for example fully digitalized signal transmission
and reception, will have for TR-MRA in the future and what
importance this innovative technology will have in routine
clinical use.
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