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                                      Eff ects of Local Vibration on Bone Loss in  
Tail-Suspended Rats

studies have shown that high-frequency, low-
amplitude whole-body vibration (WBV) pre-
vented bone loss and the decrease in bone 
strength in both animals (rats and mice) 
  [ 15   ,  31   ,  37   ,  47 ]   and humans   [ 18   ,  19 ]  . The high-
frequency vibration signifi cantly prevented 
soleus muscle atrophy and improved the biome-
chanical properties of muscle tendon in animals 
(rats and mice)   [ 26   ,  38   ,  48 ]   and humans   [ 43 ]  . 
However, some studies have found that WBV 
might cause discomfort or be deleterious to the 
peripheral vasculature of mice   [ 30 ]   and humans 
  [ 24 ]  . Additionally, the eff ects of WBV depended 
on not only the frequency of vibration   [ 32 ]   but 
also the posture of body in mice   [ 8 ]   and humans 
  [ 2   ,  35 ]  .
  On the other hand, studies have suggested that 
the mechanisms of mechanically adaptive bone 
modeling and remodeling were local responses 
in rats or mice   [ 1   ,  12   ,  16   ,  17   ,  39   ,  44   ,  51 ]  . Wenger 
  [ 47 ]   found that the forelimb was unaff ected by 
WBV even though WBV could improve femoral 
bone density in mice. More importantly, bone 

        Introduction
 ▼
   Spacefl ight has been shown to cause loss in bone 
mass and strength and muscle atrophy   [ 5   ,  14 ]  , 
Simulated microgravity caused a decrease in ten-
don stiff ness in the Achilles tendon   [ 3   ,  33 ]  . This 
may seriously aff ect astronaut performance and 
increases the risk of injury in space   [ 28 ]  . Bone 
loss is one of the highest risk factors during long 
spacefl ight. Bone mineral density decreases at an 
average rate of about 1 % per month within the 
early period in space   [ 25 ]  . Moreover, bone dem-
ineralization continues throughout the duration 
of such unloading stimulus   [ 23 ]  . Therefore, it is 
important to preserve the musculoskeletal sys-
tem conditioning of astronauts in spacefl ight.
  Treadmill, cycle ergometer and interim resist-
ance exercise have been applied on the Interna-
tional Space Station to counter bone loss and 
muscle atrophy   [ 9 ]  . However, bone loss cannot be 
fully prevented despite astronauts spending 
about 2.5 h per day on training   [ 7   ,  45 ]  . In addition 
to exercise training for preventing bone loss, 
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                                      Abstract
 ▼
   We investigated the eff ects of vibration (35 Hz, 
45 Hz and 55 Hz) as countermeasure locally 
applied to unloading hind limbs on bone, muscle 
and Achilles tendon. 40 female Sprague Dawley 
rats were divided into 5 groups (n = 8, each): tail-
suspension (TS), TS plus 35 Hz/0.3 g vibration 
(TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), 
TS plus 55 Hz/0.3 g vibration (TSV55) and con-
trol (CON). After 21 days, bone mineral density 
(BMD) and the microstructure of the femur and 
tibia were evaluated by μCT in vivo. The biome-
chanical properties of the femur and Achilles 
tendon were determined by a materials testing 
system. Ash weight of bone, isotonic contrac-
tion and wet weight of soleus were also inves-

tigated. 35 Hz and 45 Hz localized vibration were 
able to signifi cantly ameliorate the decrease in 
trabecular BMD (expressed as the percentage 
change from TS, TSV35: 48.11 %, TSV45: 31.09 %), 
microstructure and ash weight of the femur and 
tibia induced by TS. Meanwhile, 35 Hz vibration 
signifi cantly improved the biomechanical prop-
erties of the femur (57.24 % bending rigidity and 
41.66 % Young’s modulus vs. TS) and Achilles 
tendon (45.46 % maximum load and 66.67 % 
Young’s modulus vs. TS). Additionally, Young’s 
modulus of the femur was highly correlated with 
microstructural parameters. Localized vibra-
tion was useful for counteracting microgravity-
induced musculoskeletal loss. In general, the 
effi  cacy of 35 Hz was better than 45 Hz or 55 Hz 
in tail-suspended rats.
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loss of astronauts during spacefl ight and persons with spinal 
cord injury has occurred primarily in the lower limbs and trunk. 
Therefore, we believe that local vibration would be better than 
WBV for combating osteoporosis, especially in space.
  To prove whether local vibration can counteract the deteriora-
tion of musculoskeletal system under microgravity, we investi-
gated the eff ects of diff erent frequencies of vibration (35 Hz, 
45 Hz and 55 Hz) on microgravity-induced bone loss, muscle and 
Achilles tendon atrophy using a custom-made training device 
which applied vibration locally on hind limbs in tail-suspended 
rats. This study will be helpful not only in developing an effi  cient 
countermeasure against space-induced osteoporosis but also for 
understanding the mechanism of vibration on preventing oste-
oporosis and improving exercise training effi  ciency.

    Materials and Methods
 ▼
    Experimental animals and animal care
  Female 8-week old Sprague Dawley rats were purchased from 
the Experimental Animal Center of Beijing University (body 
weight ranged 175–195 g) and were subjected to the same hous-
ing conditions with 12-h dark-light cycles and food and water ad 
libitum for 21 days in the animal facility of our Department at 
Beihang University, China. Animal treatment and care con-
formed to the Regulations for the Administration of Aff airs Con-
cerning Experimental Animals pursuant to Decree No. 2 of the 
State Science and Technology Commission of China and the 
Guiding Principles for the Care and Use of Animals approved by 
the Beijing Government. The study meets the ethical standards 
of the journal   [ 20 ]  . All protocols were approved by the Animal 
Care Committee of Beihang University.
  After 7 days of adaptation in standard laboratory cages (n = 2, 
each cage), 40 specimens were randomly divided into fi ve 
groups (n = 8, each): tail-suspension (TS), tail-suspension plus 
vibration exercise at 35 Hz (TSV35), tail-suspension plus vibra-
tion exercise at 45 Hz (TSV45), tail-suspension plus vibration 
exercise at 55 Hz (TSV55) and control (CON). In TS, TSV35, TSV45 
and TSV55 rats were subjected to tail suspension for a duration 
of 21 days, thus simulating weightlessness as previously 
reported   [ 29 ]  . In addition, TSV35, TSV45 and TSV55 rats were 
treated by vibration with a custom made TS-rat training device 
designed in our laboratory (     ●  ▶     Fig. 1  ). On the device, the rats 
could engage in vibration exercise during hind limb unloading 
without harm, and hind limbs were subjected to vertical vibra-
tion loading. The rats were awake when vibration training was 
performed. The vibration treatment was administered twice a 
day (at 9 a.m. and 5 p.m.) for about 4 min each time.

     Bone mineral density (BMD) and microstructure were 
measured by μCT
  At the end of experiment (day 22), rats were anaesthetized with 
1 % pentobarbital sodium (6 ml/kg, i.p.) for in vivo scan by μCT 
(SkyScan1076, Belgium). The distal femurs and proximal tibia of 
rats were scanned as previously reported   [ 41 ]  . Briefl y, all scans 
were performed at the following settings: 70 kV X-ray voltage, 
143 μA current, 1 mm aluminum fi lter, 18 μm pixel size, 360 ° 
tomographic rotation and a rotation step of 0.6 °. The measured 
region started at the position of 1.898 mm to the growth plate 
level and extended to the diaphysis, covering a total length of 
4.745 mm. All scans were reconstructed with the same parame-
ters. The region of interest was delineated by freehand drawing 

from the same investigator, then BMD and the trabecular micro-
structural parameters of both distal femur and proximal tibia 
were calculated, including 1) BV/TV (Percent bone volume), 2) 
BS/BV (Bone surface/Bone volume), 3) Tb.Th (Trabecular thick-
ness), 4) Tb.Sp (Trabecular separation), 5) Tb.N (Trabecular 
number) and 6) SMI (Structure model index). In addition, cross-
sectional area (CSA) of rat whole calf muscles was calculated at 
4.745 mm to the growth plate.

    Isotonic contraction and wet weight of soleus
  After the μCT scan, the soleus of right hind limb was immedi-
ately exposed without damage to its main arteries and veins in 
vivo. The distal tendon of soleus was separated from bone and 
then was attached to tension sensor by low elastic line. The 
proximal soleus was still attached with bone in vivo. Then the 

    Fig. 1     a  Diagram of custom-made vibration training device for the 
tail-suspended (TS)-rat  b  Photograph showing TS-rat during exercise on 
the device in the laboratory. The rat’s trunk was placed in a fi xed box (30 ° 
angle) and hind paws were fi xed by adhesives on the stepper footplates. 
When vibration training was performed, training was initiated by a motor 
connected to an eccentric bearing. 
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contractive function of soleus was measured by RM6240 multi-
channel physiological signal acquisition decency (force sensor 
range: 0–50 g, sensitivity: 0.1 g; Chengdu instrument factory, 
Chengdu, China). Briefl y, 2 Ag-AgCl electrodes were placed on 
the soleus belly. The soleus was stimulated by a square wave 
with 900 μs pulse width and an amplitude of 4 V   [ 10 ]   on RM6240 
multi-channel physiological signal acquisition decency. Before 
single and tetanic stimulation, the soleus was adjusted to the 
optimal initial length. Single stimulation used a square wave, 
while tetanic stimulation was a square wave string. Next, fi ve 
single contraction and tetanic contraction waveforms were 
recorded. During the experiment, the soleus was constantly 
dipped into the Ringer solution to keep the muscle fi bers alive. 
Following euthanization, the tendons of the triceps surae were 
excised, and the weight of soleus and gastrocnemius dried by 
fi lter paper were ascertained on a Sartorius electronic balance 
(precision: 0.1 mg; Sartorius AG, Goettingen, Germany).

    Measurement of biomechanical properties of femur 
through 3-point bending test
  Following the in vivo measures as described above, rats were 
euthanized with narcotic overdose (1 % pentobarbital sodium, 
18 ml/kg, i.p.). The right femur of the rat hind limb was excised 
clean of soft tissues, wrapped in a saline-soaked gauze bandage 
and then preserved at  − 20 ° for the 3-point bending test. The 
three-point bending of femur in the mediolateral direction was 
carried out on a Shimadzu AG-10KNIS testing machine as previ-
ously reported   [ 40 ]  . Briefl y, the span was approximately 20 mm. 
The specimen was preconditioned for 5 cycles of loading (10 N), 
which were applied on the medial surface of the femur at a rate 
of 0.1 mm/min. The bending load was applied at a rate of 0.1 mm/
min until failure of the specimen. The maximum load (Max 
load), break load, stiff ness, bending rigidity and Young’s modu-
lus of the femoral mid shaft were determined and calculated.

    Ash weight
  The left femur and tibia of the rat hind limb were excised clean 
of soft tissues and treated using a modifi ed version of the 
method previously described   [ 21 ]  . Specifi cally, bones were 

    Fig. 2     a  Trabecular BMD of femur by μCT* p < 0.05  b  Trabecular BMD of tibia by μCT* p < 0.05  c  Cortical BMD of femur by μCT  d  Cortical BMD of tibia by 
μCT. 
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    Fig. 3     a  Trabecular microstructural parameter (BV/TV) of femur by μCT* p < 0.05  b  Trabecular microstructural parameter (BS/BV) of femur by μCT* 
p < 0.05  c  Trabecular microstructural parameter (Tb.N) of femur by μCT* p < 0.05  d  Trabecular microstructural parameter (Tb.Sp) of femur by μCT* p < 0.05 
 e  Trabecular microstructural parameter (Tb.Th) of femur by μCT* p < 0.05  f  Trabecular microstructural parameter (SMI) of femur by μCT* p < 0.05. 
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immersed in solvent (2 vol. chloroform: 1 vol. methanol) to 
extract fat for 5 days, then dried at 105 ° in a drying oven for 36 h 
until weight was stable. Dry weight was measured when cool-
ing. All specimens were burned to ash at 700 ° C in a muffl  e fur-

nace for 24 h. The ratio of ash weight was then calculated as 
AW % = ash weight/dry weight × 100.

    Tensile mechanical testing of tendons
  Following euthanization, the left Achilles tendon unit was dis-
sected free from surrounding tissues, leaving the distal portion 
attached to the calcaneus. The tissues were subsequently 
wrapped in saline-soaked gauze and stored in a Cryovial at  − 20℃ 
until the day of testing. The cross-sectional area and length of 
the tendon were measured by means of digital image just before 
mechanical testing.
  Tensile testing of the Achilles tendon was carried out on a mate-
rials testing system (AG-IS MO, Shimadzu, Japan). The specimen 
was preconditioned for 8 cycles of loading (0–10 N) at a rate of 
3 mm/min. The tensile load was applied at a rate of 3 mm/min 
until failure of the specimen. The maximum load (Max load), 
stiff ness, break load, break stress, fracture defl ection and Young’s 
modulus of the specimen were determined and calculated.

    Statistical analysis
  All values were expressed as means ± standard deviation (SD). 
Statistical analyses were performed with SPSS 13.0 using uni-
variate analysis. Pearson correlation analyses were used to assess 
the correlation between biomechanical parameters and micro-
structural parameters of femur. The level of statistical signifi -
cance was set at p < 0.05.

     Results
 ▼
    BMD from μCT
  As      ●  ▶     Fig. 2   showed, trabecular BMD (g/cm 3 ) of femur and tibia 
in the TS group decreased signifi cantly compared with the CON, 
TSV35, TSV45 and TSV55 group, respectively, while there were 
no signifi cant diff erences in the TSV35, TSV45 or TSV55 group 
compared to the CON group. There were no signifi cant diff er-
ences in cortical BMD (g/cm 3 ) of femur and tibia among fi ve 
groups.

     Trabecular bone microstructure from μCT
  In the femur and tibia, BV/TV, Tb.N and Tb.Th decreased signifi -
cantly in the TS group compared to the CON, TSV35 or TSV45 
group, while BS/BV, Tb.Sp and SMI in the TS group increased sig-
nifi cantly compared to the CON and TSV35 group. BV/TV and 
Tb.N in the TS group decreased signifi cantly compared to the 
TSV55 group. For microstructural parameters (BV/TV, Tb.N, Tb.
Th, BS/BV, Tb.Sp and SMI), there was no signifi cant diff erence in 
the TSV35 or TSV45 group compared to CON group, while Tb.Sp 
increased signifi cantly in the TSV55 group compared to the CON 
group (     ●  ▶     Fig. 3   and      ●  ▶     Table 1  ). In addition, the CSA of whole calf 
muscles in the TS group decreased signifi cantly compared to the 
CON group. For the CSA of whole calf muscles, there was no sig-

 

    CON    TS    TSV35    TSV45    TSV55  

  BV/TV    48.59 ± 6.72*    10.74 ± 3.75    39.01 ± 9.67*    33.38 ± 7.63*&    24.72 ± 3.67*#  
  BS/BV    29.29 ± 4.18*    48.31 ± 4.17    32.86 ± 4.37*    35.40 ± 4.35*    40.72 ± 3.45  
  Tb.N    3.32 ± 0.84*    1.07 ± 0.39    3.08 ± 0.55*    2.75 ± 0.45*    2.22 ± 0.25*  
  Tb.Sp    0.18 ± 0.04*    0.43 ± 0.21    0.18 ± 0.03*    0.20 ± 0.02    0.24 ± 0.02#&  
  Tb.Th    0.12 ± 0.02*    0.10 ± 0.01    0.13 ± 0.01*    0.12 ± 0.01*    0.11 ± 0.01*  
  SMI    0.75 ± 0.89*    2.48 ± 0.16    1.43 ± 0.31*    1.68 ± 0.34*    2.02 ± 0.16*#  
 Values are mean ± SD. Statistical tests were performed with univariate analysis. * indicates signifi cant diff erence vs. TS, # indicates 
signifi cant diff erence vs. CON, & indicates signifi cant diff erence vs. TSV35 (p < 0.05) 

 Table 1    Trabecular microstruc-
tural parameters of tibia by μCT.

    Fig. 4     a  Cross-Sectional Area (CSA) of whole rat right calf muscle by 
μCT*p < 0.05  b  Cross-Sectional Area (CSA) of whole rat left calf muscle by 
μCT* p < 0.05. 
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nifi cant diff erence in the TSV35, TSV45 and TSV55 group com-
pared to the CON group (     ●  ▶     Fig. 4  ).

         Contractile function and wet weight of soleus
  As      ●  ▶     Fig. 5   showed, the peak twitch tension (tension ps ), maxi-
mum tetanic tension (tension po ) and wet mass of the soleus 
(soleus weight) in the TS group were decreased signifi cantly 
compared to the CON, TSV35, TSV45 and TSV55 group, respec-
tively. No signifi cant diff erences were found among the TSV35, 
TSV45 and TSV55 group compared to the CON group in the 
parameters (tension ps , tension po  and weight) of the soleus.

     Ascertaining the biomechanical properties of the femur 
using 3 -point bending test
  In the TS group, maximum load, break load, bending rigidity, 
stiff ness and Young’s modulus were signifi cantly decreased 
compared to the CON and TSV35 group, while there were no sig-
nifi cant diff erences between the TSV35 and CON group. In the 
TSV45 and TSV55 group, maximum load, bending rigidity and 
stiff ness were signifi cantly decreased compared to the CON 
group (     ●  ▶     Fig. 6  ).

     Ash weight
  Ascertaining bone ash weight is used to assess the proportion of 
inorganic substances such as minerals vs. organic bone material. 
The ratio of ash weight (AW) of the left femur and tibia is shown 
in      ●  ▶     Fig. 7  . The TS group showed signifi cantly lower values com-
pared to the CON, TSV35 and TSV45 group. There was no signifi -
cant diff erence in the TSV35, TSV45 or TSV55 group compared to 
the CON group.

     Correlation between biomechanical parameters and 
microstructural parameters of the femur
  Our results showed that biomechanical parameters (e. g. maxi-
mum load, break load and Young’s modulus) were correlated 
with BMD and microstructural parameters of femurs. Further-
more, Young’s modulus was highly correlated with not only 
trabecular BMD but also microstructural parameters. Similarly, 
maximum load and microstructural parameters (e. g. BV/TV, 
Tb.N, Tb.Th and SMI) were highly correlated, while there was 
low correlation between break load and microstructural param-
eters or BMD (     ●  ▶     Table 2  ).

       Tensile testing of tendons
  In the TS group, Young’s modulus, fracture defl ection and break 
stress were decreased signifi cantly compared to CON and TSV35 
group. In the TSV55 group, break stress was signifi cantly 
decreased compared to CON group. None of the calculated 
parameters showed any signifi cant diff erences among the 
TSV35, TSV45 and CON groups (     ●  ▶     Table 3  ).

        Discussion
 ▼
   Most studies demonstrated that high-frequency, low-amplitude 
vibration have a positive eff ect on rat trabecular bone 
  [ 6   ,  22   ,  36   ,  37   ,  42 ]  . Recent studies also suggested that vibration 
could be used to prevent skeletal fragility in populations at risk 
of spinal cord injury   [ 2   ,  4 ]  . Moreover, the previous studies indi-
cated that 30–60 Hz (0.1–2 g) WBV was capable of preventing 
bone loss in human and animal models   [ 32 ]  . These data from 
human   [ 19   ,  34 ]   and animal   [ 49 ]   models also showed that such 
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    Fig. 5     a  Contractile tension in soleus muscle, the peak twitch tension 
(tensionps)* p < 0.05  b  Contractile tension in soleus muscle, maximum 
tetanic tension (tensionpo)* p < 0.05  c  Wet mass of soleus* p < 0.05. 
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    Fig. 6     a  Biomechanical parameter (max load) of femur* p < 0.05  b  Biomechanical parameter (break load) of femur* p < 0.05  c  Biomechanical parameter 
(stiff ness) of femur* p < 0.05  d  Biomechanical parameter (Young’s modulus) of femur* p < 0.05  e  Biomechanical parameter (bending rigidity) of femur* 
p < 0.05. 
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45 and 55 Hz could counteract the disuse-induced BMD decrease 
in trabecular bone resulting from the unloading of the hind limb. 
As for trabecular microstructure, it could be better preserved in 
unloaded hind limb through 35 Hz vibration than 45 or 55 Hz.
  Bone ash weight can be used to assess the proportion of inor-
ganic substances. In our study, three vibration models were able 
to counteract the decrease of bone mineralization. For bone 
strength, our fi ndings suggested that 35 Hz of vibration was bet-
ter than 45 or 55 Hz in preventing the deterioration of bone bio-
mechanical properties induced by TS. Moreover, biomechanical 
parameters and microstructural parameters were closely 
related, which proved that not only BMD but also microstructure 
could aff ect the biomechanical properties of bone. These fi nd-
ings supported previous studies that the microstructural param-
eters could be used to predict the biomechanical properties of 
trabecular bone   [ 11   ,  46 ]  . Meanwhile, the microstructural param-
eters also might be used to predict the eff ects of microgravity on 
biomechanical properties of bone.
  There has been some research on the eff ects of vibration on the 
hind limb muscles. In some studies, the dry defatted weight of 
the soleus and the gastrocnemius were not infl uenced by WBV 
in the ovariectomy rats   [ 31 ]  , and WBV at 45 Hz (0.3 g) decreased 
capillarity in the soleus of mouse   [ 30 ]  . However, Xie et al. found 
that WBV at 45 Hz could signifi cantly increase the cross-sec-
tional area and muscle fi ber number of the soleus in rats   [ 48 ]  . 
Yang et al. found that high-frequency WBV could counteract the 
changes in expression of myosin heavy chain in intrafusal and 
extrafusal fi bers in the rat soleus under weightlessness   [ 50 ]  . Our 
study showed that local vibration at 35, 45 and 55 Hz could 
counteract the decrease not only in soleus weight but also the 
soleus contractile strength of rats subjected to tail suspension.
  The Achilles tendon can withstand high tension generated by 
muscle contraction and transmit the muscle contractile strength 
to drive the joint activities, which is important for maintaining 
normal movements. Weightlessness, disuse and other factors 
have attenuated the biomechanical properties of The Achilles 
tendon in both rats   [ 3   ,  13 ]   and human   [ 33 ]  . High-frequency 
vibration could improve the biomechanical properties of the 
Achilles tendon and prevent Achilles tendon injury induced by 
immobilization in rats   [ 27   ,  38   ,  43 ]   or humans   [ 43 ]  . Sandhu’s 
research additionally showed that WBV could improve the bio-
mechanical properties of the tendon, while having no eff ect on 
the rat muscle   [ 38 ]  . Our fi ndings support the aforementioned 
studies. In our study, 35 Hz vibration was better than 45 and 
55 Hz on the biomechanical properties of Achilles tendon, 
although there were no marked diff erences among the frequen-
cies on counteracting tail-suspension-induced muscle atrophy. 
The vibration-induced improvement in the biomechanical prop-
erties of this specifi c tendon may be attributed to factors other 
than muscle amelioration.
  In general, this study suggests that localized high-frequency 
vibration on the hind limb is useful in counteracting muscu-

vibration stimulus could increase the bone mineral density and 
enhance the muscle force. Therefore, 35, 45 and 55 Hz (0.3 g) 
vibration were accordingly chosen in this study. Consistent with 
previous studies, this study showed that localize vibration of 35, 

  Table 2    Descriptive correlation coeffi  cients r of femur. 

    Maximum 

load  

  p    Break 

load  

  p    Young’s 

modulus  

  p  

  BMD Trab     0.66    0.011    0.45    0.097    0.82    0.000  
  BMD Cort     0.19    0.390    0.25    0.271    0.61    0.053  
  BV/TV    0.70    0.002    0.49    0.069    0.89    0.000  
  Tb.N    0.70    0.000    0.52    0.072    0.86    0.000  
  Tb.Th    0.67    0.000    0.56    0.055    0.86    0.000  
  Tb.Sp     − 0.54    0.041     − 0.45    0.154     − 0.74    0.001  
  SMI     − 0.72    0.000     − 0.49    0.068     − 0.83    0.000  
 Pearson correlation analyses were used to assess the correlation 

  Table 3    Biomechanical parameters of the Achilles tendon. 

    CON    TS    TSV35    TSV45    TSV55  

  Maximum load (N)    29.43 ± 14.9    23.47 ± 12.45    31.48 ± 7.16*    24.94 ± 13.63    23.52 ± 10.34  
  Break load (N)    24.31 ± 14.43    16.37 ± 11.37    25.45 ± 7.04    18.89 ± 9.64    19.12 ± 8.63  
  Young’s modulus (N/mm 2 )    167.00 ± 65.20*    84.12 ± 13.48    153.12 ± 53.12*    110.62 ± 22    114.61 ± 25.36  
  Fracture defl ection (N/mm 2 )    3.18 ± 2.94*    2.04 ± 0.78    2.41 ± 0.25*    2.09 ± 0.24    2.31 ± 0.39  
  Break stress (mm)    2.21 ± 0.4*    1.4 ± 0.12    1.67 ± 0.17*    1.74 ± 0.14*    1.68 ± 0.18*#  
 Values are mean ± SD. Statistical tests were performed with univariate analysis. *indicates signifi cant diff erence vs. TS, # indicates signifi cant diff erence vs. CON (p < 0.05) 

    Fig. 7     a  Ash weight percentage of left femur* p < 0.05  b  Ash weight 
percentage of left tibia* p < 0.05. 
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