C–H Arylation with Platinum

Significance: C–H activation in aryl systems finds broad applicability in the construction of conjugated organic materials. This paper reports the use of a platinum catalyst to couple aryl groups pendant on hypervalent iodine to simple arenes via a C–H activation pathway.

Comment: The authors have previously reported a similar process using a palladium catalyst (ACS Catal., 2011, 1, 170). However, with the exception of some examples in which the reaction resulted in mixed isomers, the use of a platinum catalyst produced materials with different selectivity than the palladium catalyst, providing two processes with complementary reactivity.

Selected examples:

- ![Chemical structure](image1)
 - MeO
 - Ph
 - 83% yield
 - MeO
 - Ph
 - 48% yield
 - Cl
 - p-MeOCH₃
 - 66% yield

- ![Chemical structure](image2)
 - F
 - Ph
 - 52% yield
 - m/p = 6:1
 - F
 - p-MeOCH₃
 - 53% yield
 - m/p = 1.4:1
 - Br
 - p-MeOCH₃
 - 58% yield
 - m/p = 2.5:1

Proposed mechanism:

$$
\begin{align*}
\text{Ar} & \quad + \quad [\text{Ar}_2\text{X}]^\text{TFA} \\
\text{Na}_2\text{PtCl}_4 (2.5–5 \text{ mol%}) & \quad \text{TFA or AcOH (0–32 equiv)} \\
\text{Bu}_4\text{NO}^+ & \quad (5 \text{ equiv}) \\
100–120 \degree \text{C}, 72 \text{ h} & \quad \rightarrow \\
\end{align*}
$$

SYNFACTS Contributors: Timothy M. Swager, John B. Goods

Synfacts 2014, 10(1), 0033 Published online: 13.12.2013

DOI: 10.1055/s-0033-1340385; **Reg-No.:** S14213SF