F. NIKBAKHT, A. HEYDARI,* D. SABERI, K. AZIZI (TARBIAT MODARES UNIVERSITY, TEHRAN, IRAN)
Oxidation of Secondary Amines to Nitrones Using Magnetically Separable Tungstophosphoric Acid Supported on Silica-Encapsulated γ-Fe₂O₃ Nanoparticles

Preparation of Nitrones Using γ-Fe₂O₃@SiO₂-H₃PW₁₂O₴₀

Results:

- \(R^1\text{N}^+\text{N}^+R^2 \) (R₁: aromatic, R₂: aliphatic, MeOH, r.t., Ar)
- \(\gamma\text{-Fe₂O₃@SiO₂-H₃PW₁₂O₴₀} \) (3 equiv)
- \(\text{H₂O₂} \)

Significance: The oxidation of secondary amines by superparamagnetic tungstophosphoric acid supported on silica-encapsulated γ-Fe₂O₃ was carried out with an aqueous hydrogen peroxide as oxidant to give the corresponding nitrones 1a–h in up to 90% yield.

Comment: The γ-Fe₂O₃@SiO₂-H₃PW₁₂O₴₀ nanoparticles were readily recovered by an external magnet and reused three times without significant loss of catalytic activity (1st reuse: 1a 85% yield, 3rd reuse: 1a 80% yield). The authors previously reported the preparation of γ-Fe₂O₃@SiO₂-H₃PW₁₂O₴₀ and its application to the synthesis of formamidines (J. Mol. Struct. 2012, 1027, 156).