Synlett 2014; 25(2): 170-178
DOI: 10.1055/s-0033-1340216
account
© Georg Thieme Verlag Stuttgart · New York

Flashback Forward: Reaction-Driven De Novo Design of Bioactive Compounds

Tiago Rodrigues
a   ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland   Fax: +41(44)63313 79   Email: gisbert.schneider@pharma.ethz.ch
,
Gisbert Schneider*
a   ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland   Fax: +41(44)63313 79   Email: gisbert.schneider@pharma.ethz.ch
b   inSili.com GmbH, Segantinisteig 3, 8049 Zürich, Switzerland
› Author Affiliations
Further Information

Publication History

Received: 20 September 2013

Accepted: 08 October 2013

Publication Date:
02 December 2013 (online)


Abstract

Over the past 20 years, the computer-assisted de novo design of chemical entities has matured as an innovative methodology for identifying hits and leads in early drug discovery. In particular, its recent prominence is entwined in a mixture of extraordinary success stories and the urge for the discovery of innovative chemotypes. Here, we describe and comment on our own experiences in developing and applying software tools to unravel new chemical space, as well as the experimental challenges entailed in the de novo design of G-protein coupled receptor ligands and kinase inhibitors.

1 Introduction

2 Approaches to De Novo Design and Selected Success Stories

3 Ligand-Based De Novo Design of G-Protein Coupled Receptor Ligands

4 Reaction-Based De Novo Design of Kinase Inhibitors

5 Concluding Remarks

 
  • References

  • 1 Bennani YL. Drug Discovery Today 2011; 17–18: 779
  • 2 Lahana R. Drug Discovery Today 1999; 4: 447
  • 3 Hartenfeller M, Schneider G. Methods Mol. Biol. 2011; 672: 299
  • 4 De Novo Molecular Design . Schneider G. Wiley-VCH; Weinheim: 2013
  • 5 Hopkins AL, Groom CR, Alex A. Drug Discovery Today 2004; 9: 430
  • 6 Schneider G, Fechner U. Nat. Rev. Drug Discovery 2005; 4: 649
  • 7 Schneider G. J. Comput.-Aided Mol. Des. 2012; 26: 115
  • 8 Edfeldt FN, Folmer RH, Breeze AL. Drug Discovery Today 2011; 16: 284
  • 9 Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H. J. Med. Chem. 2001; 44: 4615
  • 10 Schmidt JM, Mercure J, Tremblay GB, Pagé M, Kalbakji A, Feher M, Dunn-Dufault R, Peter MG, Redden PR. J. Med. Chem. 2003; 46: 1408
  • 11 Nugiel DA, Krumrine JR, Hill DC, Damewood JR. Jr, Bernstein PR, Sobotka-Briner CD, Liu J, Zacco A, Pierson ME. J. Med. Chem. 2010; 53: 1876
  • 12 Pierce AC, Rao G, Bemis GW. J. Med. Chem. 2004; 47: 2768
  • 13 Jorgensen WL, Ruiz-Caro J, Tirado-Rives J, Basavapathruni A, Anderson KS, Hamilton AD. Bioorg. Med. Chem. Lett. 2006; 16: 663
  • 14 Wang Y, Lu H, Zhu Q, Jiang S, Liao Y. Bioorg. Med. Chem. Lett. 2010; 20: 189
  • 15 Böhm HJ. J. Comput.-Aided Mol. Des. 1992; 6: 61
  • 16 Wang R, Gao Y, Lai L. J. Mol. Model. 2000; 6: 498
  • 17 Gillet V, Johnson AP, Mata P, Sike S, Williams P. J. Comput.-Aided Mol. Des. 1993; 7: 127
  • 18 Jiang C, Yang L, Wu W.-T, Guo Q.-L, You Q.-D. Bioorg. Med. Chem. 2011; 19: 5612
  • 19 Li W.-W, Chen J.-J, Zheng R.-L, Zhang W.-Q, Cao Z.-X, Yang L.-L, Qing X.-Y, Zhou L.-X, Yang L, Yu L.-D, Chen L.-J, Wei Y.-Q, Yang S.-Y. ChemMedChem 2010; 5: 513
  • 20 Park H, Jeong Y, Hong S. Bioorg. Med. Chem. Lett. 2012; 22: 1027
    • 21a Park H, Bahn YJ, Ryu SE. Bioorg. Med. Chem. Lett. 2009; 19: 4330
    • 21b Kandil S, Biondaro S, Vlachakis D, Cummins A.-C, Coluccia A, Berry C, Leyssen P, Neyts J, Brancale A. Bioorg. Med. Chem. Lett. 2009; 19: 2935
  • 22 Yuan Y, Pei J, Lai L. J. Chem. Inf. Model. 2011; 51: 1083
  • 23 Ni S, Yuan Y, Huang J, Mao X, Lv M, Zhu J, Shen X, Pei J, Lai L, Jiang H, Li J. J. Med. Chem. 2009; 52: 5295
    • 24a Gillet VJ, Myatt G, Zsoldos Z, Johnson AP. Perspect. Drug Discovery Des. 1995; 3: 34
    • 24b Gillet VJ, Newell W, Mata P, Myatt G, Sike S, Zsoldos Z, Johnson AP. J. Chem. Inf. Comput. Sci. 1994; 34: 207
  • 25 Ali MA, Bhogal N, Findlay JB. C, Fishwick CW. G. J. Med. Chem. 2005; 48: 5655
  • 26 Mok NY, Chadwick J, Kellett KA. B, Casas-Arce E, Hooper NM, Johnson AP, Fishwick CW. G. J. Med. Chem. 2013; 56: 1843
  • 27 Stevens RC, Cherezon V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wüthrich K. Nat. Rev. Drug Discovery 2013; 12: 25
  • 28 Rajagopal S, Rajagopal K, Lefkowitz RJ. Nat. Rev. Drug Discovery 2010; 9: 373
    • 29a Wise A, Gearing K, Rees S. Drug Discovery Today 2002; 7: 235
    • 29b Hopkins AL, Groom CR. Nat. Rev. Drug Discovery 2002; 1: 727
  • 30 Levit A, Barak D, Behrens M, Meyerhof W, Niv MY. Methods Mol. Biol. 2012; 914: 179
  • 31 Lewell XQ, Judd DB, Watson SP, Hann MM. J. Chem. Inf. Comput. Sci. 1998; 38: 511
  • 32 Vinkers HM, de Jonge MR, Daeyaert FF. D, Heeres J, Koymans LM. H, van Lenthe JH, Lewi PJ, Timmerman H, Aken KV, Janssen PA. J. J. Med. Chem. 2003; 46: 2765
  • 33 Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang X.-P, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FR. C, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL. Nature 2012; 492: 215
  • 34 Schneider G, Neidhart W, Giller T, Schmid G. Angew. Chem. Int. Ed. 1999; 38: 2894
  • 35 Schneider G, Lee M.-L, Stahl M, Schneider P. J. Comput.-Aided Mol. Des. 2000; 14: 487
  • 36 Rogers-Evans M, Alanine AI, Bleicher KH, Kube D, Schneider G. QSAR Comb. Sci. 2004; 23: 426
  • 37 Alig L, Alsenz J, Andjelkovic M, Bendels S, Bénardeau A, Bleicher K, Bourson A, David-Pierson P, Guba W, Hildbrand S, Kube D, Lübbers T, Mayweg AV, Narquizian R, Neidhart W, Nettekoven M, Plancher J.-M, Rocha C, Rogers-Evans M, Röver S, Schneider G, Taylor S, Waldmeier P. J. Med. Chem. 2008; 51: 2115
    • 38a Fechner U, Schneider G. J. Chem. Inf. Model. 2006; 46: 699
    • 38b Fechner U, Schneider G. J. Chem. Inf. Model. 2007; 47: 656
  • 39 Schüller A, Suhartono M, Fechner U, Tanrikulu Y, Breitung S, Scheffer U, Göbel MW, Schneider G. J. Comput.-Aided Mol. Des. 2008; 22: 59
  • 40 Proschak E, Sander K, Zettl H, Tanrikulu Y, Rau O, Schneider P, Schubert-Zsilavecz M, Stark H, Schneider G. ChemMedChem 2009; 4: 45
  • 41 Rush TS. III, Grant JA, Mosyak L, Nicholls A. J. Med. Chem. 2005; 48: 1489
  • 42 Vainio MJ, Puranen JS, Johnson MS. J. Chem. Inf. Model. 2009; 49: 492
  • 43 Hartenfeller M, Eberle M, Meier P, Nieto-Oberhuber C, Altmann K.-H, Schneider G, Jacoby E, Renner S. J. Chem. Inf. Model. 2012; 52: 1167
  • 44 Hartenfeller M, Eberle M, Meier P, Nieto-Oberhuber C, Altmann K.-H, Schneider G, Jacoby E, Renner S. J. Chem. Inf. Model. 2011; 51: 3093
  • 45 Hartenfeller M, Zettl H, Walter M, Rupp M, Reisen F, Proschak E, Weggen S, Stark H, Schneider G. PLoS Comput. Biol. 2012; 8: e1002380
  • 46 Thurmond RL, Desai PJ, Dunford PJ, Fung-Leung WP, Hofstra CL, Jiang W, Nguyen S, Riley JP, Sun S, Williams KN, Edwards JP, Karlsson L. J. Pharmacol. Exp. Ther. 2004; 309: 404
  • 47 Schneider G, Geppert T, Hartenfeller M, Reisen F, Klenner A, Reutlinger M, Hähnke V, Hiss JA, Zettl H, Keppner S, Spänkuch B, Schneider P. Future Med. Chem. 2011; 3: 415
  • 48 Spänkuch B, Keppner S, Lange L, Rodrigues T, Zettl H, Koch CP, Reutlinger M, Hartenfeller M, Schneider P, Schneider G. Angew. Chem. Int. Ed. 2013; 52: 4676
  • 49 Rodrigues T, Roudnicky F, Koch CP, Kudoh T, Reker D, Detmar M, Schneider G. Chem. Sci. 2013; 4: 1229
  • 50 Graczyk PP. J. Med. Chem. 2007; 50: 5773
  • 51 Rodrigues T, Kudoh T, Roudnicky F, Lim YF, Lin Y.-C, Koch CP, Seno M, Detmar M, Schneider G. Angew. Chem. Int. Ed. 2013; 52: 10006
  • 52 Schneider G. Drug Discov. Today Technol. 2013; 10: e453