S. ROSTAMNIA,* A. NURI, H. XIN, A. POURJAVADI, S. H. HOSSEINI (UNIVERSITY OF MARAGHEH AND SHARIF UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN; QINGDAO INSTITUTE OF BIOENERGY AND BIOPROCESS TECHNOLOGY, P. R. OF CHINA)

Water Dispersed Magnetic Nanoparticles (H$_2$O-DMNPs) of γ-Fe$_2$O$_3$ for Multicomponent Coupling Reactions: a Green, Single-Pot Technique for the Synthesis of Tetrahydro-4H-chromenes and Hexahydroquinoline Carboxylates

Synthesis of Tetrahydro-4H-chromenes Using Nano γ-Fe$_2$O$_3$ in H$_2$O

Significance: γ-Fe$_2$O$_3$ magnetic nanoparticles (nano-γ-Fe$_2$O$_3$), which were dispersed by ultrasonic irradiation in water, catalyzed the three-component condensation reaction of 1,3-cyclohexanediones, arylaldehydes, and malononitrile to give the corresponding tetrahydro-4H-chromenes in up to 95% yield (14 examples, eq. 1). The dispersed nano-γ-Fe$_2$O$_3$ was also effective for the four-component reaction of dimedone, arylaldehydes, β-keto esters, and NH$_4$OAc to afford the corresponding hexahydroquinoline carboxylates in up to 96% yield (8 examples, eq. 2).

Comment: The catalytic activity of the dispersed nano-γ-Fe$_2$O$_3$ was superior to that of FeCl$_3$, Fe(NO)$_3$, bulk-Fe$_3$O$_4$, nano-Fe$_3$O$_4$ and non-dispersed nano-γ-Fe$_2$O$_3$. In the formation of tetrahydro-4H-chromenes, the catalyst was recovered magnetically and reused four times.

Typical results:

1. **R = R = H, Ar = 2,4,6-trimethylphenyl**
 - **eq. 1:**
 - 95% yield (14 examples)
 - **eq. 2:**
 - 92% yield
2. **R = R = OMe, Ar = 2,4,6-trimethylphenyl**
 - **eq. 1:**
 - 95% yield
 - **eq. 2:**
 - 95% yield
3. **R = R = NO$_2$, Ar = 2,4,6-trimethylphenyl**
 - **eq. 1:**
 - 90% yield
 - **eq. 2:**
 - 92% yield
4. **R = R = Cl, Ar = 2,4,6-trimethylphenyl**
 - **eq. 1:**
 - 95% yield
 - **eq. 2:**
 - 95% yield

SYNFACTS Contributors: Yasuhiro Uozumi, Takao Osako

Synfacts 2013, 9(9), 1018 Published online: 19.08.2013

DOI: 10.1055/s-0033-1339588; Reg-No.: Y07913SF