S. Rostamnia,* A. Nuri, H. Xin, A. Pourjavadi, S. H. Hosseini (University of Maragheh and Sharif University of Technology, Tehran, Iran; Qingdao Institute of Bioenergy and Bioprocess Technology, P. R. of China)


Synthesis of Tetrahydro-4H-chromenes Using Nano γ-Fe₂O₃ in H₂O

Significance: γ-Fe₂O₃ magnetic nanoparticles (nano-γ-Fe₂O₃), which were dispersed by ultrasonic irradiation in water, catalyzed the three-component condensation reaction of 1,3-cyclohexanediones, arylaldehydes, and malononitrile to give the corresponding tetrahydro-4H-chromenes in up to 95% yield (14 examples, eq. 1). The dispersed nano-γ-Fe₂O₃ was also effective for the four-component reaction of dimeredone, arylaldehydes, β-keto esters, and NH₄OAc to afford the corresponding hexahydroquinoline carboxylates in up to 96% yield (8 examples, eq. 2).

Comment: The catalytic activity of the dispersed nano-γ-Fe₂O₃ was superior to that of FeCl₃, Fe(NO₃)₃, bulk-Fe₃O₄, nano-Fe₃O₄ and non-dispersed nano-γ-Fe₂O₃. In the formation of tetrahydro-4H-chromenes, the catalyst was recovered magnetically and reused four times.

Typical results:

(1) 

(2) 

SYNFACTS Contributors: Yasuhiro Uozumi, Takao Osako

SYNFACTS 2013, 9(9), 1018 Published online: 19.08.2013 DOI: 10.1055/s-0033-1339588; Reg-No.: Y07913SF

Category: Polymer-Supported Synthesis

Key words: γ-Fe₂O₃ multicomponent reaction tetrahydro-4H-chromenes hexahydroquinoline carboxylates