Co$_3$O$_4$–Nitrogen Complex for Hydrogenation of Nitroarenes

Preparation of a carbon-supported cobalt oxide nitrogen catalyst 1:

\[
\text{Co(OAc)$_2$} \cdot 4\text{H}_2\text{O} + \text{EtOH} \quad \text{r.t., 30 min} \quad \xrightarrow{\text{Vulcan XC72R}} \quad \text{60 °C, 4 h} \quad \xrightarrow{\text{800 °C, 2 h}} \quad \text{Ar}
\]

Results:

- 2a: 4 h, 91% yield
- 2b: 4 h, 99% yield
- 2c: 4 h, 99% yield
- 2d: 6 h, 97% yield
- 2e: 6 h, 94% yield
- 2f: 6 h, 93% yield
- 2g: 12 h, 96% yield
- 2h: 4 h, 99% yield
- 2i: 6 h, 96% yield
- 2j: 4 h, 97% yield

Significance: A carbon-supported cobalt oxide-nitrogen catalyst 1 was prepared by pyrolysis (800 °C) of Co(phen)$_2$(OAc)$_2$ on Vulcan XC72R (an activated carbon). The hydrogenation of nitroarenes was carried out with 1 (1 mol% copper) in THF–H$_2$O under 50 bar of H$_2$ to give the corresponding anilines 2a–j in up to 99% yield.

Comment: The catalyst was reused nine times in the reaction of nitrobenzene where catalytic activity gradually decreased. The catalyst was characterized with TEM, energy-dispersive X-ray (EDX), XPS, and electron paramagnetic resonance (EPR).