Heterogenized Cobalt Oxide Catalysts for Nitroarene Reduction by Pyrolysis of Molecularly Defined Complexes

LEIBNIZ-INSTITUT FÜR KATALYSE E.V. AN DER UNIVERSITÄT ROSTOCK, GERMANY

Co$_3$O$_4$–Nitrogen Complex for Hydrogenation of Nitroarenes

Preparation of a carbon-supported cobalt oxide nitrogen catalyst 1:

- **N**
 - **N**
 - **Co(OAc)$_2$·4H$_2$O**
 - **EtOH, r.t., 30 min**
 - **Vulcan XC72R, 60 °C, 4 h**
 - **800 °C, 2 h**

Catalyst 1 (1 mol%)

- H$_2$ (50 bar), THF–H$_2$O, 110 °C

Results:

- **2a:** 4 h, 91% yield
- **2b:** 4 h, 99% yield
- **2c:** 4 h, 99% yield
- **2d:** 6 h, 97% yield
- **2e:** 6 h, 94% yield
- **2f:** 6 h, 93% yield
- **2g:** 12 h, 96% yield
- **2h:** 4 h, 99% yield
- **2i:** 6 h, 96% yield
- **2j:** 4 h, 97% yield

Significance: A carbon-supported cobalt oxide-nitrogen catalyst 1 was prepared by pyrolysis (800 °C) of Co(phen)$_2$(OAc)$_2$ on Vulcan XC72R (an activated carbon). The hydrogenation of nitroarenes was carried out with 1 (1 mol% copper) in THF–H$_2$O under 50 bar of H$_2$ to give the corresponding anilines 2a–j in up to 99% yield.

Comment: The catalyst was reused nine times in the reaction of nitrobenzene where catalytic activity gradually decreased. The catalyst was characterized with TEM, energy-dispersive X-ray (EDX), XPS, and electron paramagnetic resonance (EPR).

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Heeyoel Baek

SYNFACTS 2013, 9(8), 0905 Published online: 18.07.2013 DOI: 10.1055/s-0033-1339428; Reg-No.: Y07213SF

2013 © THIEME STUTTGART • NEW YORK