Semin Thromb Hemost 2012; 38(08): 768-779
DOI: 10.1055/s-0032-1328888
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanisms of Thrombosis in Paraproteinemias: The Effects of Immunomodulatory Drugs

Maurizio Zangari
1   Myeloma Program, Division of Hematology, University of Utah, Salt Lake City, Utah
,
Tamara Berno
1   Myeloma Program, Division of Hematology, University of Utah, Salt Lake City, Utah
,
Fenghuang Zhan
1   Myeloma Program, Division of Hematology, University of Utah, Salt Lake City, Utah
,
Guido Tricot
2   Holden Cancer Center's Bone Marrow Transplant and Myeloma Program, University of Iowa, Iowa City, Iowa
,
Louis Fink
3   Desert Research Institute, Las Vegas, Nevada
› Author Affiliations
Further Information

Publication History

Publication Date:
28 October 2012 (online)

Abstract

The introduction of immunomodulatory drugs (IMiDs) has improved clinical outcome in patients with multiple myeloma (MM). However, their use has been associated with a higher risk of cardiovascular complications. The use of IMiDs with dexamethasone, chemotherapy, or in combination with erythropoietic agents enhances the risk of venous thromboembolism (VTE) up to 25%. The pathogenesis of this increased risk of VTE seen with IMiD-based combination therapy is not yet fully understood, but several mechanisms have been proposed to explain the development of this hypercoagulable state. In cancer patients, prothrombotic factors include age, chemotherapy, immobility, enhanced expression of tissue factor of malignant cells, circulating microparticles, and increased vascular endothelial growth factor (VEGF). In patients with paraproteinemias, immunoglobulin-specific mechanisms may also be involved and include hypofibrinolysis, hyperviscosity, procoagulant autoantibody production, effects of inflammatory cytokines, and acquired activated protein C resistance (APCR). In this review we will focus on IMiD-associated effects on specific thrombotic mechanisms.

 
  • References

  • 1 Bennett CL, Angelotta C, Yarnold PR , et al. Thalidomide- and lenalidomide-associated thromboembolism among patients with cancer. JAMA 2006; 296 (21) 2558-2560
  • 2 Rak J, Milsom C, Yu J. Tissue factor in cancer. Curr Opin Hematol 2008; 15 (5) 522-528
  • 3 López-Pedrera C, Barbarroja N, Dorado G, Siendones E, Velasco F. Tissue factor as an effector of angiogenesis and tumor progression in hematological malignancies. Leukemia 2006; 20 (8) 1331-1340
  • 4 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24 (6) 1015-1022
  • 5 Van Den Berg YW, Reitsma PH. Not exclusively tissue factor: neutrophil extracellular traps provide another link between chemotherapy and thrombosis. J Thromb Haemost 2011; 9 (11) 2311-2312
  • 6 Contrino J, Hair G, Kreutzer DL, Rickles FR. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 1996; 2 (2) 209-215
  • 7 Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27 (29) 4834-4838
  • 8 Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36 (8) 888-906
  • 9 Morel O, Toti F, Hugel B , et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?. Arterioscler Thromb Vasc Biol 2006; 26 (12) 2594-2604
  • 10 Versteeg HH, Ruf W. Emerging insights in tissue factor-dependent signaling events. Semin Thromb Hemost 2006; 32 (1) 24-32
  • 11 Giesen PL, Rauch U, Bohrmann B , et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A 1999; 96 (5) 2311-2315
  • 12 Mackman N. Alternatively spliced tissue factor–one cut too many?. Thromb Haemost 2007; 97 (1) 5-8
  • 13 Auwerda JJ, Yuana Y, Osanto S , et al. Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost 2011; 105 (1) 14-20
  • 14 Kakkar AK, Lemoine NR, Scully MF, Tebbutt S, Williamson RC. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg 1995; 82 (8) 1101-1104
  • 15 Uno K, Homma S, Satoh T , et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 2007; 96 (2) 290-295
  • 16 Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia 2001; 3 (5) 371-384
  • 17 White MC, McHowat J. Protease activation of calcium-independent phospholipase A2 leads to neutrophil recruitment to coronary artery endothelial cells. Thromb Res 2007; 120 (4) 597-605
  • 18 Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65 (4) 1406-1413
  • 19 Yu JL, May L, Lhotak V , et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105 (4) 1734-1741
  • 20 Boccaccio C, Comoglio PM. Genetic link between cancer and thrombosis. J Clin Oncol 2009; 27 (29) 4827-4833
  • 21 Denko N, Schindler C, Koong A, Laderoute K, Green C, Giaccia A. Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin Cancer Res 2000; 6 (2) 480-487
  • 22 Ma L, Francia G, Viloria-Petit A , et al. In vitro procoagulant activity induced in endothelial cells by chemotherapy and antiangiogenic drug combinations: modulation by lower-dose chemotherapy. Cancer Res 2005; 65 (12) 5365-5373
  • 23 Falanga A, Barbui T, Rickles FR. Hypercoagulability and tissue factor gene upregulation in hematologic malignancies. Semin Thromb Hemost 2008; 34 (2) 204-210
  • 24 Valsami S, Ruf W, Leikauf MS, Madon J, Kaech A, Asmis LM. Immunomodulatory drugs increase endothelial tissue factor expression in vitro. Thromb Res 2011; 127 (3) 264-271
  • 25 Cesarman-Maus G, Braggio E, Maldonado H, Fonseca R. Absence of tissue factor expression by neoplastic plasma cells in multiple myeloma. Leukemia 2012 February 15: DOI: 10.1038/leu.2012.43. [Epub ahead of print]
  • 26 Dvorak HF, Quay SC, Orenstein NS , et al. Tumor shedding and coagulation. Science 1981; 212 (4497) 923-924
  • 27 Zwicker JI, Liebman HA, Neuberg D , et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15 (22) 6830-6840
  • 28 Leroyer AS, Anfosso F, Lacroix R , et al. Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost 2010; 104 (3) 456-463
  • 29 Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001; 85 (4) 639-646
  • 30 Daniel L, Fakhouri F, Joly D , et al. Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 2006; 69 (8) 1416-1423
  • 31 Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006; 36 (2) 182-187
  • 32 Robert S, Poncelet P, Lacroix R , et al. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?. J Thromb Haemost 2009; 7 (1) 190-197
  • 33 Mobarrez F, Antovic J, Egberg N , et al. A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res 2010; 125 (3) e110-e116
  • 34 Shah MD, Bergeron AL, Dong JF, López JA. Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 2008; 19 (5) 365-372
  • 35 Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol 2008; 484: 79-93
  • 36 van Doormaal FF, Kleinjan A, Di Nisio M, Büller HR, Nieuwland R. Cell-derived microvesicles and cancer. Neth J Med 2009; 67 (7) 266-273
  • 37 Zahra S, Anderson JA, Stirling D, Ludlam CA. Microparticles, malignancy and thrombosis. Br J Haematol 2011; 152 (6) 688-700
  • 38 Sinauridze EI, Kireev DA, Popenko NY , et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (3) 425-434
  • 39 Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2004; 53 (4) 210-230
  • 40 Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 2006; 107 (9) 3537-3545
  • 41 Tesselaar ME, Osanto S. Risk of venous thromboembolism in lung cancer. Curr Opin Pulm Med 2007; 13 (5) 362-367
  • 42 Hron G, Kollars M, Weber H , et al. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 2007; 97 (1) 119-123
  • 43 Key NS, Kwaan HC. Microparticles in thrombosis and hemostasis. Semin Thromb Hemost 2010; 36 (8) 805-806
  • 44 Zwicker JI, Furie BC, Furie B. Cancer-associated thrombosis. Crit Rev Oncol Hematol 2007; 62 (2) 126-136
  • 45 Manly DA, Wang J, Glover SL , et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 2010; 125 (6) 511-512
  • 46 Palumbo A, Boccadoro M. A new standard of care for elderly patients with myeloma. Lancet 2007; 370 (9594) 1191-1192
  • 47 Zangari M, Barlogie B, Anaissie E , et al. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation. Br J Haematol 2004; 126 (5) 715-721
  • 48 Johnson DC, Corthals S, Ramos C , et al. Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood 2008; 112 (13) 4924-4934
  • 49 Almasi M, Sevcikova S, Slaby O , et al. Association study of selected genetic polymorphisms and occurrence of venous thromboembolism in patients with multiple myeloma who were treated with thalidomide. Clin LymphomaMyeloma Leuk 2011; 11: 414-420
  • 50 Hussein MA. Thromboembolism risk reduction in multiple myeloma patients treated with immunomodulatory drug combinations. Thromb Haemost 2006; 95 (6) 924-930
  • 51 Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005; 293 (6) 715-722
  • 52 Elice F, Fink L, Tricot G, Barlogie B, Zangari M. Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br J Haematol 2006; 134 (4) 399-405
  • 53 Asosingh K, De Raeve H, de Ridder M , et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005; 90 (6) 810-817
  • 54 Hu J, Handisides DR, Van Valckenborgh E , et al. Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood 2010; 116 (9) 1524-1527
  • 55 Colla S, Storti P, Donofrio G , et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 2010; 24 (11) 1967-1970
  • 56 Martin SK, Diamond P, Williams SA , et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 2010; 95 (5) 776-784
  • 57 Giatromanolaki A, Bai M, Margaritis D , et al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 2010; 30 (7) 2831-2836
  • 58 Löfstedt T, Fredlund E, Holmquist-Mengelbier L , et al. Hypoxia inducible factor-2 alpha in cancer. Cell Cycle 2007; 6 (8) 919-926
  • 59 Patel SA, Simon MC. Biology of hypoxia-inducible factor-2 alpha in development and disease. Cell Death Differ 2008; 15 (4) 628-634
  • 60 Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104 (13) 5431-5436
  • 61 Zhang J, Sattler M, Tonon G , et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1 alpha-dependent pathway in multiple myeloma. Cancer Res 2009; 69 (12) 5082-5090
  • 62 Kaluz S, Kaluzová M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1 alpha C-terminal activation domain. Mol Cell Biol 2006; 26 (15) 5895-5907
  • 63 Shin DH, Chun YS, Lee DS, Huang LE, Park JW. Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 2008; 111 (6) 3131-3136
  • 64 Lu L, Payvandi F, Wu L , et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 2009; 77 (2) 78-86
  • 65 Watanabe K, Koizumi T, Ruan Z, Kubo K, Sakai A, Shibamoto T. Reduced pulmonary vascular reactivity after cold exposure to acute hypoxia: a role of nitric oxide (NO). High Alt Med Biol 2007; 8 (1) 43-49
  • 66 Lévesque JP, Winkler IG, Hendy J , et al. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 2007; 25 (8) 1954-1965
  • 67 Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4 (12) 915-925
  • 68 Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7 (6) 504-516
  • 69 Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3 (4) 347-361
  • 70 Boccaccio C, Sabatino G, Medico E , et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 2005; 434 (7031) 396-400
  • 71 Erickson LA, Fici GJ, Lund JE, Boyle TP, Polites HG, Marotti KR. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 1990; 346 (6279) 74-76
  • 72 Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342 (24) 1792-1801
  • 73 Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69: 145-182
  • 74 Mahtouk K, Tjin EP, Spaargaren M, Pals ST. The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta 2010; 1806 (2) 208-219
  • 75 Alexandrakis MG, Passam FH, Sfiridaki A, Kandidaki E, Roussou P, Kyriakou DS. Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol 2003; 72 (4) 229-233
  • 76 Seidel C, Børset M, Turesson I , et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. Blood 1998; 91 (3) 806-812
  • 77 Seidel C, Lenhoff S, Brabrand S , et al. Hepatocyte growth factor in myeloma patients treated with high-dose chemotherapy. Br J Haematol 2002; 119 (3) 672-676
  • 78 Pour L, Svachova H, Adam Z , et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol 2010; 89 (4) 385-389
  • 79 Ludek P, Hana S, Zdenek A , et al. Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol 2010; 84 (4) 332-336
  • 80 Pour L, Svachova H, Adam Z , et al. Pretreatment hepatocyte growth factor and thrombospondin-1 levels predict response to high-dose chemotherapy for multiple myeloma. Neoplasma 2010; 57 (1) 29-34
  • 81 Börset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88 (10) 3998-4004
  • 82 Zhan F, Hardin J, Kordsmeier B , et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99 (5) 1745-1757
  • 83 Takai K, Hara J, Matsumoto K , et al. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 1997; 89 (5) 1560-1565
  • 84 Neben K, Moehler T, Kraemer A , et al. Response to thalidomide in progressive multiple myeloma is not mediated by inhibition of angiogenic cytokine secretion. Br J Haematol 2001; 115 (3) 605-608
  • 85 Dmoszyńska A, Roliński J, Bojarska-Junak A , et al. Influence of thalidomide on Bcl2 expression and proangiogenic cytokine levels in short-term culture of peripheral blood and bone marrow mononuclear cells of multiple myeloma patients. Pol J Pharmacol 2001; 53 (6) 709-713
  • 86 Rosiñol L, Cibeira MT, Segarra M , et al. Response to thalidomide in multiple myeloma: impact of angiogenic factors. Cytokine 2004; 26 (4) 145-148
  • 87 Kumar R, Yoneda J, Bucana CD, Fidler IJ. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol 1998; 12 (4) 749-757
  • 88 Anderson KL, Smith KA, Conners K, McKercher SR, Maki RA, Torbett BE. Myeloid development is selectively disrupted in PU.1 null mice. Blood 1998; 91 (10) 3702-3710
  • 89 Selak MA, Chignard M, Smith JB. Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J 1988; 251 (1) 293-299
  • 90 Pidard D, Renesto P, Berndt MC, Rabhi S, Clemetson KJ, Chignard M. Neutrophil proteinase cathepsin G is proteolytically active on the human platelet glycoprotein Ib-IX receptor: characterization of the cleavage sites within the glycoprotein Ib alpha subunit. Biochem J 1994; 303: 489-498
  • 91 Si-Tahar M, Renesto P, Falet H, Rendu F, Chignard M. The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin. Biochem J 1996; 313 (Pt 2) 401-408
  • 92 Gale AJ, Rozenshteyn D. Cathepsin G, a leukocyte protease, activates coagulation factor VIII. Thromb Haemost 2008; 99 (1) 44-51
  • 93 Pal R, Monaghan SA, Hassett AC , et al. Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood 2010; 115 (3) 605-614
  • 94 Stirling D, Hannant WA, Ludlam CA. Transcriptional activation of the factor VIII gene in liver cell lines by interleukin-6. Thromb Haemost 1998; 79 (1) 74-78
  • 95 Stouthard JM, Levi M, Hack CE , et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 1996; 76 (5) 738-742
  • 96 Amrani DL, Christensen C, Hauerwas L , et al. Hemostatic evaluation of Sarns/3M-VAD implantation in calves. ASAIO Trans 1991; 37 (3) M308-M310
  • 97 Neuman MG, Benhamou JP, Bourliere M , et al. Serum tumour necrosis factor-alpha and transforming growth factor-beta levels in chronic hepatitis C patients are immunomodulated by therapy. Cytokine 2002; 17 (2) 108-117
  • 98 Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993; 82 (2) 513-520
  • 99 Begbie M, Notley C, Tinlin S, Sawyer L, Lillicrap D. The Factor VIII acute phase response requires the participation of NFkappaB and C/EBP. Thromb Haemost 2000; 84 (2) 216-222
  • 100 Moore KL, Andreoli SP, Esmon NL, Esmon CT, Bang NU. Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 1987; 79 (1) 124-130
  • 101 Zangari M, Saghafifar F, Mehta P, Barlogie B, Fink L, Tricot G. The blood coagulation mechanism in multiple myeloma. Semin Thromb Hemost 2003; 29 (3) 275-282
  • 102 Coppola A, Tufano A, Di Capua M, Franchini M. Bleeding and thrombosis in multiple myeloma and related plasma cell disorders. Semin Thromb Hemost 2011; 37 (8) 929-945
  • 103 Yağci M, Sucak GT, Haznedar R. Fibrinolytic activity in multiple myeloma. Am J Hematol 2003; 74 (4) 231-237
  • 104 Zangari M, Elice F, Fink L, Tricot G. Thrombosis in multiple myeloma. Expert Rev Anticancer Ther 2007; 7 (3) 307-315
  • 105 van Marion AM, Auwerda JJ, Lisman T , et al. Prospective evaluation of coagulopathy in multiple myeloma patients before, during and after various chemotherapeutic regimens. Leuk Res 2008; 32 (7) 1078-1084
  • 106 Tricot G. New insights into role of microenvironment in multiple myeloma. Lancet 2000; 355 (9200) 248-250
  • 107 Barillé S, Bataille R, Amiot M. The role of interleukin-6 and interleukin-6/interleukin-6 receptor-alpha complex in the pathogenesis of multiple myeloma. Eur Cytokine Netw 2000; 11 (4) 546-551
  • 108 Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol 2008; 26 (9) 1544-1552
  • 109 Ramsay AG, Gribben JG. Immune dysfunction in chronic lymphocytic leukemia T cells and lenalidomide as an immunomodulatory drug. Haematologica 2009; 94 (9) 1198-1202
  • 110 Aue G, Nelson Lozier J, Tian X , et al. Inflammation, TNFα and endothelial dysfunction link lenalidomide to venous thrombosis in chronic lymphocytic leukemia. Am J Hematol 2011; 86 (10) 835-840
  • 111 Dmoszynska A, Podhorecka M, Manko J, Bojarska-Junak A, Rolinski J, Skomra D. The influence of thalidomide therapy on cytokine secretion, immunophenotype, BCL-2 expression and microvessel density in patients with resistant or relapsed multiple myeloma. Neoplasma 2005; 52 (2) 175-181
  • 112 Eby C. Pathogenesis and management of bleeding and thrombosis in plasma cell dyscrasias. Br J Haematol 2009; 145 (2) 151-163
  • 113 DiMinno G, Coraggio F, Cerbone AM , et al. A myeloma paraprotein with specificity for platelet glycoprotein IIIa in a patient with a fatal bleeding disorder. J Clin Invest 1986; 77 (1) 157-164
  • 114 Knop S, Gerecke C, Liebisch P , et al. Lenalidomide, Adriamycin, and dexamethasone (RAD) in patients with relapsed and refractory multiple myeloma: a report from the German Myeloma Study Group DSMM (Deutsche Studiengruppe Multiples Myelom). Blood 2009; 113 (18) 4137-4143
  • 115 Baz R, Li L, Kottke-Marchant K , et al. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo Clin Proc 2005; 80 (12) 1568-1574
  • 116 Rajkumar SV, Hayman SR, Lacy MQ , et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 2005; 106 (13) 4050-4053
  • 117 Palumbo A, Falco P, Corradini P , et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA—Italian Multiple Myeloma Network. J Clin Oncol 2007; 25 (28) 4459-4465
  • 118 Landolfi R, Cipriani MC, Novarese L. Thrombosis and bleeding in polycythemia vera and essential thrombocythemia: pathogenetic mechanisms and prevention. Best Pract Res Clin Haematol 2006; 19 (3) 617-633
  • 119 Hassan AA, Kroll MH. Acquired disorders of platelet function. Hematology Am Soc Hematol Educ Prog 2005; 403-408
  • 120 Gabriel DA, Muga K, Boothroyd EM. The effect of fibrin structure on fibrinolysis. J Biol Chem 1992; 267 (34) 24259-24263
  • 121 Lopaciuk S, Bykowska K, McDonagh JM , et al. Difference between type I autoimmune inhibitors of fibrin stabilization in two patients with severe hemorrhagic disorder. J Clin Invest 1978; 61 (5) 1196-1203
  • 122 Ideguchi H, Suehiro T, Ohike M , et al. Impaired fibrin formation in a patient with multiple myeloma presenting the “gelation” phenomenon. Nippon Ketsueki Gakkai Zasshi 1988; 51 (1) 109-117
  • 123 Lackner H, Hunt V, Zucker MB, Pearson J. Abnormal fibrin ultrastructure, polymerization, and clot retraction in multiple myeloma. Br J Haematol 1970; 18 (6) 625-636
  • 124 Cohen I, Amir J, Ben-Shaul Y, Pick A, De Vries A. Plasma cell myeloma associated with an unusual myeloma protein causing impairment of fibrin aggregation and platelet function in a patient with multiple malignancy. Am J Med 1970; 48 (6) 766-776
  • 125 Davey FR, Gordon GB, Boral LI, Gottlieb AJ. Gamma globulin inhibition of fibrin clot formation. Ann Clin Lab Sci 1976; 6 (1) 72-77
  • 126 Kotlín R, Sobotková A, Riedel T , et al. Acquired dysfibrinogenemia secondary to multiple myeloma. Acta Haematol 2008; 120 (2) 75-81
  • 127 Sugai S. IgA pyroglobulin, hyperviscosity syndrome and coagulation abnormality in a patient with multiple myeloma. Blood 1972; 39 (2) 224-237
  • 128 Baglin T. The measurement and application of thrombin generation. Br J Haematol 2005; 130 (5) 653-661
  • 129 Pabinger I, Ay C. Biomarkers and venous thromboembolism. Arterioscler Thromb Vasc Biol 2009; 29 (3) 332-336
  • 130 Hemker HC, Al Dieri R, De Smedt E, Béguin S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost 2006; 96 (5) 553-561
  • 131 Petropoulou AD, Gerotziafas GT, Samama MM, Hatmi M, Rendu F, Elalamy I. In vitro study of the hypercoagulable state in multiple myeloma patients treated or not with thalidomide. Thromb Res 2008; 121 (4) 493-497
  • 132 Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989; 264 (9) 4743-4746
  • 133 Marchant RE, Kang I, Sit PS , et al. Molecular views and measurements of hemostatic processes using atomic force microscopy. Curr Protein Pept Sci 2002; 3 (3) 249-274
  • 134 Corso A, Lorenzi A, Terulla V , et al. Modification of thrombomodulin plasma levels in refractory myeloma patients during treatment with thalidomide and dexamethasone. Ann Hematol 2004; 83 (9) 588-591
  • 135 Zappasodi P, Mangiacavalli S, Terulla V , et al. Thrombomodulin levels are not modified during thalidomide treatment. Eur J Haematol 2006; 77 (5) 453-454
  • 136 Cini M, Zamagni E, Valdré L , et al. Thalidomide-dexamethasone as up-front therapy for patients with newly diagnosed multiple myeloma: thrombophilic alterations, thrombotic complications, and thromboprophylaxis with low-dose warfarin. Eur J Haematol 2010; 84 (6) 484-492
  • 137 Kaushal V, Kaushal GP, Melkaveri SN, Mehta P. Thalidomide protects endothelial cells from doxorubicin-induced apoptosis but alters cell morphology. J Thromb Haemost 2004; 2 (2) 327-334
  • 138 Ingram GI, Kingston PJ, Leslie J, Bowie EJ. Four cases of acquired von Willebrand's syndrome. Br J Haematol 1971; 21 (2) 189-199
  • 139 Buchanan GR, Handin RI. Platelet function in the Chediak-Higashi syndrome. Blood 1976; 47 (6) 941-948
  • 140 Franchini M, Targher G, Lippi G. Prophylaxis in von Willebrand disease. Ann Hematol 2007; 86 (10) 699-704
  • 141 Tiede A, Priesack J, Werwitzke S , et al. Diagnostic workup of patients with acquired von Willebrand syndrome: a retrospective single-centre cohort study. J Thromb Haemost 2008; 6 (4) 569-576
  • 142 Federici AB, Budde U, Rand JH. Acquired von Willebrand syndrome 2004: international registry—diagnosis and management from online to bedside. Hamostaseologie 2004; 24 (1) 50-55
  • 143 Michiels JJ, Budde U, van der Planken M, van Vliet HH, Schroyens W, Berneman Z. Acquired von Willebrand syndromes: clinical features, aetiology, pathophysiology, classification and management. Best Pract Res Clin Haematol 2001; 14 (2) 401-436
  • 144 Scrobohaci ML, Daniel MT, Levy Y, Marolleau JP, Brouet JC. Expression of GpIb on plasma cells in a patient with monoclonal IgG and acquired von Willebrand disease. Br J Haematol 1993; 84 (3) 471-475
  • 145 Eikenboom JC, van der Meer FJ, Briët E. Acquired von Willebrand's disease due to excessive fibrinolysis. Br J Haematol 1992; 81 (4) 618-620
  • 146 Shinagawa A, Kojima H, Berndt MC , et al. Characterization of a myeloma patient with a life-threatening hemorrhagic diathesis: presence of a lambda dimer protein inhibiting shear-induced platelet aggregation by binding to the A1 domain of von Willebrand factor. Thromb Haemost 2005; 93 (5) 889-896
  • 147 van Genderen PJ, Vink T, Michiels JJ, van 't Veer MB, Sixma JJ, van Vliet HH. Acquired von Willebrand disease caused by an autoantibody selectively inhibiting the binding of von Willebrand factor to collagen. Blood 1994; 84 (10) 3378-3384
  • 148 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993; 90 (3) 1004-1008
  • 149 Bertina RM, Koeleman BP, Koster T , et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 (6475) 64-67
  • 150 Rees MM, Rodgers GM. Homocysteinemia: association of a metabolic disorder with vascular disease and thrombosis. Thromb Res 1993; 71 (5) 337-359
  • 151 Castoldi E, Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2010; 8 (3) 445-453
  • 152 de Visser MC, van Hylckama Vlieg A, Tans G , et al. Determinants of the APTT- and ETP-based APC sensitivity tests. J Thromb Haemost 2005; 3 (7) 1488-1494
  • 153 Osterud B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis 1995; 6 (Suppl. 01) S20-S25
  • 154 Muñoz-Rodríguez FJ, Reverter JC, Font J , et al. Clinical significance of acquired activated protein C resistance in patients with systemic lupus erythematosus. Lupus 2002; 11 (11) 730-735
  • 155 De Lucia D, De Vita F, Orditura M , et al. Hypercoagulable state in patients with advanced gastrointestinal cancer: evidence for an acquired resistance to activated protein C. Tumori 1997; 83 (6) 948-952
  • 156 Humphries SE, Panahloo A, Montgomery HE, Green F, Yudkin J. Gene-environment interaction in the determination of levels of haemostatic variables involved in thrombosis and fibrinolysis. Thromb Haemost 1997; 78 (1) 457-461
  • 157 Zangari M, Saghafifar F, Anaissie E , et al. Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis 2002; 13 (3) 187-192
  • 158 Hoffman R, Haim N, Brenner B. Cancer and thrombosis revisited. Blood Rev 2001; 15 (2) 61-67
  • 159 Schöni R, Quehenberger P, Wu JR, Wilmer M. Clinical evaluation of a new functional test for detection of activated protein C resistance (Pefakit APC-R Factor V Leiden) at two centers in Europe and the USA. Thromb Res 2007; 119 (1) 17-26
  • 160 Zangari M, Berno T, Zhan F, Boucher KM, Tricot G, Fink L. Activated protein C resistance as measured by residual factor V after Russell's viper venom and activated protein C treatment analyzed as a continuous variable in multiple myeloma and normal controls. Blood Coagul Fibrinolysis 2011; 22 (5) 420-423