In Situ Generated Iron Oxide Nanocrystals as Efficient and Selective Catalysts for the Reduction of Nitroarenes Using a Continuous Flow Method

Reduction of Nitroarenes Using In Situ Generated Iron Oxide Nanocrystals

Reduction of nitroarenes using the batch system:

\[
\text{Fe(acac)}_3 (0.25 \text{ mol\%}) + \text{N}_2\text{H}_4 \cdot \text{H}_2\text{O} (1.2 \text{ equiv}) \xrightarrow{\text{MeOH, MW, 150 °C, 2–8 min}} \text{R-NH}_2 \]

(eq. 1)

Selected examples:

- \(\text{R} \text{NH}_2\) (20 examples, 95–99% yield)
- 2 min, 99% yield
- 8 min, 99% yield
- 4 min, 99% yield

Continuous-flow reduction of nitroarenes:

\[
\text{Fe(acac)}_3 (0.25 \text{ mol\%}) + \text{N}_2\text{H}_4 \cdot \text{H}_2\text{O} (1.2 \text{ equiv}) \xrightarrow{\text{MeOH, 150–170 °C}} \text{R-NH}_2
\]

(eq. 2)

Selected examples:

- \(\text{R} \text{NH}_2\) (6–12 mL/min, 1.3–1.6 min)
- 6 mL/min, 150 °C, 96% yield
- 12 mL/min, 170 °C, 95% yield

Significance: Iron oxide nanocrystals, generated in situ from Fe(acac)_3 and hydrazine hydrate, catalyzed the reduction of nitroarenes with hydrazine hydrate under microwave conditions to give the corresponding anilines in 95–99% yield (20 examples, eq. 1). In the reduction of nitrobenzene to aniline using the batch system, the catalyst was magnetically separated from the reaction mixture and reused seven times.

Comment: The reduction of nitroarenes was also performed using a continuous-flow system to afford the anilines in 95–97% yield (eq. 2). The in situ generated iron oxide nanoparticles were characterized by XRD and HRTEM analyses. ICP–MS showed 7.9% iron leaching from the catalyst during the reduction using the batch system.