Nanoporous Gold Catalyst for the Selective Semihydrogenation of Alkynes

Significance: A nanoporous gold catalyst (AuNPore), which was prepared by dealloying a homogeneous Au$_{30}$Ag$_{70}$ alloy in nitric acid (70 wt%), catalyzed the semihydrogenation of alkynes with organosilanes and water as the hydrogen source to afford the corresponding alkenes. The reaction of phenylacetylene with PhMe$_2$SiH and water in DMF proceeded in the presence of 2 mol% of AuNPore to give styrene as the sole product (method A: 35 °C, 3 h, 96% yield). 1-Dodecyne underwent the semihydrogenation efficiently in acetonitrile with 50 mol% of pyridine (method B: 80 °C, 8 h, 98% yield).

Comment: The catalytic ability of various catalysts was examined for the semihydrogenation of phenylacetylene: AuNPore (96%), AuCl (18%), Au$_{30}$Ag$_{70}$ alloy (0%), PdNPore (54%), and Pd/C (20%). The authors proposed the reaction pathway including the generation of the H$^+$ on the AuNPore surface ([AuNPore-H$^+$]) and pyridinium cation ([HPy$^+$]) which subsequently react with the alkynes to form the corresponding Z-alkenes.

Selected examples:

- **Ph** + PhMe$_2$SiH + H$_2$O \rightarrow Ph-R$_1^-R_2^+$
 - 96% yield, method A
- **n-C$_8$H$_{17}$** + PhMe$_2$SiH + H$_2$O \rightarrow R$_1^-R_2^+$
 - 98% yield, method B
- **Hex** + CO$_2$Me + PhMe$_2$SiH + D$_2$O \rightarrow R$_1^-R_2^+$
 - 80% yield, (4:1)
- **Ph** + CO$_2$Et + PhMe$_2$SiH + D$_2$O \rightarrow R$_1^-R_2^+$
 - 80% yield, (2:1)

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Takuma Sato

SYNFACTS 03012013, 9(1), 0107 Published online: 17.12.2012

DOI: 10.1055/s-0032-1317911; **Reg-No:** Y13912SF