
Depolymerization Kinetics of Self-Immolative Polymers

Significance: Self-immolative polymers are materials that degrade into small molecules by an intramolecular cascade reaction upon removal of an end-capping group. Due to their backbones primed for degradation, self-immolative polymers require strategic design and synthesis. Here, Gillies and co-workers have synthesized two new self-immolative polymers with different degradation rates by altering the nucleophilicity and electrophilicity of the functional groups participating in the intramolecular cascade reaction. **Comment:** Previously reported self-immolative polymer **1** depolymerizes through a cyclization– 1,6-elimination pathway with the cyclization being the rate-determining step. By increasing the electrophilicity of the carbonyl by changing it from a carbamate to a carbonate, as seen in polymer **2**, the rate of depolymerization was increased 500fold. A further increase in depolymerization was achieved when the nucleophile was changed from an amine to a thiol (polymer **3**). Polymer **3** is of particular interest due to its redox-sensitive depolymerization, which could be used for cytosolic drug delivery.

SYNFACTS Contributors: Timothy M. Swager, Ellen M. Sletten Synfacts 2013, 9(1), 0035 Published online: 17.12.2012 **DOI:** 10.1055/s-0032-1317890; **Reg-No.:** S13812SF Synthesis of Materials and Unnatural Products

Key words

degradable polymers

controlled depolymerization

cyclization kinetics