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Abstract: Silybin is the major component (ca. 30%) of the silyma-
rin complex extracted from the seeds of Silybum marianum, with
multiple biological activities operating at various cell levels. As an
ongoing effort toward the exploitation of natural products as scaf-
folds for chemical diversification at readily accessible positions, we
present here an efficient synthetic procedure to obtain new 23-phos-
phodiester silybin conjugates with different labels. A key point in
our approach is the new 3,5,7,20-tetra-O-acetylsilybin-23-phos-
phoramidite, useful for a variety of derivatizations following a reli-
able and well-known chemistry. The feasibility of the procedure has
been demonstrated by preparing new 23-silybin conjugates, exploit-
ing standard phosphoramidite chemistry.
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Flavonoids and flavonolignans are widely distributed
among various citrus plants and are frequently found in
the human diet. They may act as enzyme inhibitors, free-
radical scavengers, antitumor agents, antibacterial agents,
anti-inflammatory agents, and antioxidants.1–3

Silybin (Figure 1) is the major component (ca. 30%) of the
silymarin complex extracted from the seeds of Silybum
marianum consisting of two diastereomers A and B in a
ratio of approximately 1:1.

Figure 1  Chemical structure of silybin A and silybin B

Silybin is a natural compound with multiple biological ac-
tivities operating at various cell levels most of them relat-
ed to its radical-scavenging activity. Along with the
beneficial activities resulting from the antioxidant and
radical-scavenging properties,3,4 silybin has recently re-
ceived attention due to its anticancer and chemopreven-
tive actions,5,6 as well as hypocholesterolemic,
cardioprotective, and neuroprotective activities.3,7 In vivo
applications of silybin are rather hampered by its very low

bioavailability. In an attempt to improve its biological
properties and facilitate in vivo applications of silybin,
only limited structural modifications have been
proposed3,8–12 and the available analogues are still unsat-
isfactory. Therefore new synthetic approaches for selec-
tively modifying silybin are of interest.

As a part of our continuing research effort towards the
synthesis of new natural product analogues,13,14 we pres-
ent here the preliminary results of a efficient synthetic
procedure to obtain new 23-phosphodiester silybin conju-
gates with different labels.

The introduction of a phosphate group may bring pharma-
ceutical and pharmacokinetic benefits.15 Conjugation is
usually considered as an efficient route in drug discovery
to improve the biological properties of a large number of
drugs and can improve the bioavailability and delivery as
well as the biological activity.

We chose to start from the new 23-phosphoramidite build-
ing block 3 (Scheme 1) which could be transformed into a
series of conjugates using a solution-phase parallel array
protocol, exploiting standard and reliable phosphorami-
dite chemistry.15 We initially converted silybin (1) into its
23-ODMT ether by a reaction with DMT-chloride in pyr-
idine at 50 °C. After exhaustive acetylation with an excess
of acetic anhydride in pyridine, subsequent treatment with
5% formic acid in dichloromethane allowed the removal
of the DMT protecting group to give 2 in 75% yield and
this could be converted into the corresponding phosphor-
amidite derivatives 3. Thus intermediate 2 was reacted
with 2-cyanoethyl-N,N-diisopropylamino-chloro-
phosphoramidite and DIPEA in anhydrous dichlorometh-
ane. In these preliminary studies, the silybin used was a
mixture of diastereomers, and the derivatives 3 were ob-
tained as a mixture of inseparable diastereomers, although
the 1H NMR and 31P NMR spectra appeared to be of a sin-
gle compound. After purification the identities of com-
pounds 3, obtained in good yields (65%), were confirmed
by NMR (1H, 13C, and 31P) and ESI-HRMS analysis.16

Subsequently we selected a group of model molecules
having a free hydroxyl group (A–E, Scheme 1), useful for
coupling with the key intermediate 3.17 In particular, we
selected molecules known for their ability to act as molec-
ular carriers (steroids, bile acids),18–21 to improve water
solubility (polyethers)22 and as radical scavengers (nucle-
osides).23,24 While A, B, and C are commercially avail-
able, D and E were efficiently obtained starting from 2′-
deoxyadenosine and 3α,7α,12α,24-tetrahydroxycholane,
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respectively. Exploiting the different reactivity of hydrox-
yl groups our studies were carried out using TBDMSCl or
DMTCl for the transient protection of the primary OH
moiety while all other groups were protected by acetyla-
tion. 2′-Deoxyguanosine and 3α,7α,12α,24-tetrahydroxy-
cholane were protected by reaction with TBDMSCl and
DMTCl, respectively.25,26 The products were acetylated
with acetic anhydride to yield fully protected products. Fi-
nally, the TBDMS group was cleaved by Et3N·3HF and
DCA to yield N2-acetyl-2′,3′-O-diacetyl-deoxyguanosine
(D) and 3α,7α,12α-O-triacetyl-24-hydroxycholane (E) in
overall yields of 80 and 75%, respectively.

The coupling of 3 with A–E (Scheme 1) was carried out
by using the classic coupling reagent (0.45 M tetrazole in
MeCN), and then treatment with 5.5 M tert-butyl hydro-
peroxide solution in decane led to phosphotriesters 4a–e.
After purification by flash chromatography, the deriva-
tives 4 were treated with concemtrated aqueous ammonia
and MeOH (1:1, v:v) at room temperature, allowing full
deprotection, leading to the desired phosphodiester deriv-
atives 5a–e in good yields (Scheme 1).27 All final deriva-
tives 5a–e were purified by flash chromatography and
then characterized by NMR (1H and 31P) and MS analysis.
All the intermediates and final derivatives were obtained
as mixtures of two diastereomers, that were inseparable

by chromatography, although the NMR spectra of many
of them appeared to indicate a single compound.

In conclusion a facile and efficient protocol for the syn-
thesis of a broad array of new 23-phosphodiester silybin
structured conjugates has been achieved. The feasibility
of this procedure has been demonstrated by preparing new
23-silybin conjugates, exploiting standard phosphorami-
dite chemistry. A key point in our strategy is the new sily-
bin building block 3, useful for a variety of derivatizations
following established chemistry. In principle, this meth-
odology can be readily extended to other molecules which
have a free hydroxyl group.15,28
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1H NMR (500 
MHz, CDCl3, r.t., mixture of diastereomers): δ = 7.02–6.60 
(6 H, complex signals), 5.85 (2 H, br s), 5.59 (1 H, dd, J = 
11.9, 11.7 Hz), 5.11 (2 H, complex signals), 4.78 (1 H, br s), 
4.04 (1 H, br signal), 3.95–3.63 (6 H, complex signals), 2.05 
(2 H, br signal), 1.92–0.99 (26 H, complex signals), 0.85 (3 
H, br s), 0.79 (3 H, d, J = 4.8 Hz), 0.74 (6 H, br s), 0.55 (3 H, 
s) ppm. 31P NMR (161.98 MHz, CDCl3): δ = –0.83 ppm. 
HRMS (MALDI-TOF, negative ions): m/z calcd for 
C52H66O13P: 929.4246; found: 929.4246 [M – H]–.
Compound 5b: 1H NMR (500 MHz, CD3OD, r.t., mixture of 
diastereomers): δ = 7.11–6.72 (6 H, complex signals), 5.91 
(1 H, d, J = 1.5 Hz), 5.85 (1 H, m), 4.98–4.75 (2 H, complex 
signal), 4.41 (1 H, d, J = 11.5 Hz), 4.21–4.05 (5 H, m), 3.88–
3.68 (24 H, complex signals) ppm. 31P NMR (161.98 MHz, 
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CDCl3): δ = 3.1 ppm. HRMS (MALDI-TOF, negative ions): 
m/z calcd for C36H44O18P: 795.2271; found: 795.2271 [M – 
H]–.
Compound 5c: 1H NMR (500 MHz, CD3OD, r.t., mixture of 
diastereomers): δ = 7.79 (1 H, s), 7.11–6.72 (6 H, complex 
signals), 6.41 (1 H, dd, J = 6.8, 6.8 Hz), 5.91 (1 H, d, J = 1.5 
Hz), 5.85 (1 H, m), 4.97–4.74 (2 H, complex signal), 4.65 (1 
H, m), 4.41 (1 H, d, J = 11.5 Hz), 4.22–4.10 (4 H, m), 4.00–
3.85 (5 H, complex signals), 2.44 (2 H, m), 1.99 (3 H, s) 
ppm. 31P NMR (161.98 MHz, CDCl3): δ = 3.3 ppm. HRMS 
(MALDI-TOF, negative ions): m/z calcd for C35H34N2O17P: 
785.1600; found: 785.1602 [M – H]–.
Compound 5d: 1H NMR (500 MHz, CD3OD, r.t., mixture of 
diastereomers): δ = 8.56 (1 H, s), 8.29 (1 H, s), 7.11–6.72 (6 
H, complex signals), 6.05 (1 H,d, J = 6.0 Hz), 5.91 (1 H, d, 
J = 1.5 Hz), 5.85 (1 H, m), 4.90 (2 H, complex signals), 4.63 

(1 H, m), 4.54 (1 H, m), 4.41 (1 H, d, J = 11.5 Hz), 4.35 (1 
H, m), 4.20 (2 H, m), 4.21–4.05 (3 H, m), 3.88–3.68 (3 H, s) 
ppm. 31P NMR (161.98 MHz, CDCl3): δ = 3.1 ppm. HRMS 
(MALDI-TOF, negative ions): m/z calcd for C35H33N5O16P: 
810.1665; found: 810.1666 [M – H]–.
Compound 5e: 1H NMR (500 MHz, CD3OD, r.t., mixture of 
diastereomers): δ = 7.08–6.81 (6 H, complex signals), 5.95–
5.89 (2 H, m), 5.07 (1 H, m), 4.97 (1 H, m), 4.52 (2 H, m), 
4.24 (1 H, m), 4.06 (1 H, m), 3.95–3.68 (7 H, complex 
signals), 3.30 (1 H, m), 2.01–0.70 (33 H, complex signals) 
ppm. 31P NMR (161.98 MHz, CDCl3): δ = 4.3 ppm. ESI-MS 
(positive ions): m/z calcd for C49H63O16P: 938.39; found: 
939.48 [MH]+; [MNa]+ = 961.37. HRMS (MALDI-TOF, 
negative ions): m/z calcd for C49H62O16P: 937.3781; found: 
937.3782 [M – H]–. 

(28) Stawinski, J.; Kraszewski, A. Acc. Chem Res. 2002, 35, 952.
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