n-BuLi-Initiated Ring-Opening Cyclization of Cyclopropene Derivatives

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \mathrm{F}$
$\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{SO}_{2} \mathrm{Ph}$ $\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Et}$ $\mathrm{n}=0,1$

up to 72% yield

Selected examples:

Proposed mechanism:

Significance: The authors report a new access to benzocycles from cyclopropene derivatives. Treatment of 2-acetyl or 2-acetoxymethyl cyclopropenes with n-BuLi leads to deprotection and subsequent ring-opening cyclization to yield benzofurans and isochromenes in a one-pot procedure.

DOI: 10.1055/s-0031-1290542; Reg-No.: P02512SF

Comment: Based on deuterium experiments a plausible mechanism is proposed: The reaction of A with n-BuLi forms \mathbf{B} and the oxygen anion in \mathbf{B} attacks the cyclopropene moiety to give \mathbf{D}. Alternatively, an excess of n-BuLi may further deprotonate the olefinic proton to generate dianion \mathbf{C}, which may also undergo ring-opening cyclization to give \mathbf{E}.

