Tuning Chemoselectivity in Iron-Catalyzed Sonogashira-Type Reactions Using a Bisphosphine Ligand with Peripheral Steric Bulk: Selective Alkynylation of Nonactivated Alkyl Halides Angew. Chem. Int. Ed. 2011, 50, 10973-10976.

Category

Alkyl———
up to 92% yield

Alkyl $=c$-Hept, Cy, substituted piperidines and aliphatics
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
$\mathrm{R}=\mathrm{Cy}, o$-methylbenzyl, $\mathrm{C}(\mathrm{Me})_{2} \mathrm{OSiMe}_{2}(t-\mathrm{Bu}), \mathrm{Si}(i-\mathrm{Pr})_{3}, \mathrm{SiMe}_{2}(t-\mathrm{Bu})$

Selected examples:

88% yield

86% yield

81% yield

68% yield

73% yield

Significance: The authors report a novel coupling of primary and secondary alkyl halides with alkynylmagnesium reagents with iron catalysis. The use of a bisphosphine ligand bearing peripheral steric bulk as well as slow addition of the Grignard reagent suppress undesired side reactions.

Comment: By using starting materials with two potential reactive sites, for example $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{Br}$ and $\mathrm{C}\left(\mathrm{sp}^{2}\right)-O T f$, and applying the reported ironcatalyzed cross-coupling with an alkynyl Grignard reagent, the $\mathrm{C}(\mathrm{sp})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$-coupled products are obtained in excellent yields.

[^0]
[^0]: synfacts Contributors: Paul Knochel, Andreas K. Steib
 Synfacts 2012, 8(2), 0193 Published online: 19.01.2012
 DOI: 10.1055/s-0031-1290007; Reg-No.: P17311SF

