Semin Liver Dis 2010; 30(4): 319-332
DOI: 10.1055/s-0030-1267534
© Thieme Medical Publishers

Hepatitis A and Hepatitis C Viruses: Divergent Infection Outcomes Marked by Similarities in Induction and Evasion of Interferon Responses

Lin Qu1 , Stanley M. Lemon1
  • 1Division of Infectious Diseases, Department of Medicine, Center for Translational Research, Inflammatory Diseases Institute, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Further Information

Publication History

Publication Date:
19 October 2010 (online)

ABSTRACT

Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV.

REFERENCES

  • 1 Martin A, Lemon S M. The molecular biology of hepatitis A virus. In: Ou J Hepatitis Viruses. Norwell, MA; Kluwer Academic Publishers 2002: 23-50
  • 2 Lemon S M, Walker C, Alter M J et al.. Hepatitis C viruses. In: Knipe DM, Howley PM Fields Virology. 5th ed. Philadelphia; Lippincott Williams & Wilkins 2006: 1253-1304
  • 3 Wakita T, Pietschmann T, Kato T et al.. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.  Nat Med. 2005;  11(7) 791-796
  • 4 Lindenbach B D, Evans M J, Syder A J et al.. Complete replication of hepatitis C virus in cell culture.  Science. 2005;  309(5734) 623-626
  • 5 Yi M, Villanueva R A, Thomas D L, Wakita T, Lemon S M. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells.  Proc Natl Acad Sci U S A. 2006;  103(7) 2310-2315
  • 6 Ebihara T, Shingai M, Matsumoto M, Wakita T, Seya T. Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells.  Hepatology. 2008;  48(1) 48-58
  • 7 Brack K, Frings W, Dotzauer A, Vallbracht A. A cytopathogenic, apoptosis-inducing variant of hepatitis A virus.  J Virol. 1998;  72(4) 3370-3376
  • 8 Dienstag J L, Feinstone S M, Purcell R H et al.. Experimental infection of chimpanzees with hepatitis A virus.  J Infect Dis. 1975;  132(5) 532-545
  • 9 LeDuc J W, Lemon S M, Keenan C M, Graham R R, Marchwicki R H, Binn L N. Experimental infection of the New World owl monkey (Aotus trivirgatus) with hepatitis A virus.  Infect Immun. 1983;  40(2) 766-772
  • 10 Bradley D W, Maynard J E, Popper H et al.. Persistent non-A, non-B hepatitis in experimentally infected chimpanzees.  J Infect Dis. 1981;  143(2) 210-218
  • 11 Lindenbach B D, Meuleman P, Ploss A et al.. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro.  Proc Natl Acad Sci U S A. 2006;  103(10) 3805-3809
  • 12 Martin A, Lemon S M. Hepatitis A virus: from discovery to vaccines.  Hepatology. 2006;  43(2, Suppl 1) S164-S172
  • 13 Schulman A N, Dienstag J L, Jackson D R et al.. Hepatitis A antigen particles in liver, bile, and stool of chimpanzees.  J Infect Dis. 1976;  134(1) 80-84
  • 14 Rosenblum L S, Villarino M E, Nainan O V et al.. Hepatitis A outbreak in a neonatal intensive care unit: risk factors for transmission and evidence of prolonged viral excretion among preterm infants.  J Infect Dis. 1991;  164(3) 476-482
  • 15 Glikson M, Galun E, Oren R, Tur-Kaspa R, Shouval D. Relapsing hepatitis A. Review of 14 cases and literature survey.  Medicine (Baltimore). 1992;  71(1) 14-23
  • 16 Sjogren M H, Tanno H, Fay O et al.. Hepatitis A virus in stool during clinical relapse.  Ann Intern Med. 1987;  106(2) 221-226
  • 17 Chisari F V. Unscrambling hepatitis C virus-host interactions.  Nature. 2005;  436(7053) 930-932
  • 18 Cooper S, Erickson A L, Adams E J et al.. Analysis of a successful immune response against hepatitis C virus.  Immunity. 1999;  10(4) 439-449
  • 19 Lechner F, Wong D K, Dunbar P R et al.. Analysis of successful immune responses in persons infected with hepatitis C virus.  J Exp Med. 2000;  191(9) 1499-1512
  • 20 Thimme R, Oldach D, Chang K M et al.. Determinants of viral clearance and persistence during acute hepatitis C virus infection.  J Exp Med. 2001;  194(10) 1395-1406
  • 21 Shoukry N H, Grakoui A, Houghton M et al.. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection.  J Exp Med. 2003;  197(12) 1645-1655
  • 22 Grakoui A, Shoukry N H, Woollard D J et al.. HCV persistence and immune evasion in the absence of memory T cell help.  Science. 2003;  302(5645) 659-662
  • 23 Fleischer B, Fleischer S, Maier K et al.. Clonal analysis of infiltrating T lymphocytes in liver tissue in viral hepatitis A.  Immunology. 1990;  69(1) 14-19
  • 24 Houghton M, Abrignani S. Prospects for a vaccine against the hepatitis C virus.  Nature. 2005;  436(7053) 961-966
  • 25 Lemon S M, Murphy P C, Provost P J et al.. Immunoprecipitation and virus neutralization assays demonstrate qualitative differences between protective antibody responses to inactivated hepatitis A vaccine and passive immunization with immune globulin.  J Infect Dis. 1997;  176(1) 9-19
  • 26 Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system.  Science. 2010;  327(5963) 291-295
  • 27 Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling.  Ann N Y Acad Sci. 2008;  1143 1-20
  • 28 Takeuchi O, Akira S. Innate immunity to virus infection.  Immunol Rev. 2009;  227(1) 75-86
  • 29 Yoneyama M, Kikuchi M, Natsukawa T et al.. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.  Nat Immunol. 2004;  5(7) 730-737
  • 30 Ting J P, Duncan J A, Lei Y. How the noninflammasome NLRs function in the innate immune system.  Science. 2010;  327(5963) 286-290
  • 31 Yoneyama M, Kikuchi M, Matsumoto K et al.. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.  J Immunol. 2005;  175(5) 2851-2858
  • 32 Saito T, Hirai R, Loo Y M et al.. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.  Proc Natl Acad Sci U S A. 2007;  104(2) 582-587
  • 33 Kang D C, Gopalkrishnan R V, Wu Q, Jankowsky E, Pyle A M, Fisher P B. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties.  Proc Natl Acad Sci U S A. 2002;  99(2) 637-642
  • 34 Kovacsovics M, Martinon F, Micheau O, Bodmer J L, Hofmann K, Tschopp J. Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation.  Curr Biol. 2002;  12(10) 838-843
  • 35 Andrejeva J, Childs K S, Young D F et al.. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter.  Proc Natl Acad Sci U S A. 2004;  101(49) 17264-17269
  • 36 Johnson C L, Gale Jr M. CARD games between virus and host get a new player.  Trends Immunol. 2006;  27(1) 1-4
  • 37 Zeng W, Sun L, Jiang X et al.. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity.  Cell. 2010;  141(2) 315-330
  • 38 Hornung V, Ellegast J, Kim S et al.. 5′-Triphosphate RNA is the ligand for RIG-I.  Science. 2006;  314(5801) 994-997
  • 39 Plumet S, Herschke F, Bourhis J M, Valentin H, Longhi S, Gerlier D. Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.  PLoS ONE. 2007;  2(3) e279
  • 40 Kato H, Takeuchi O, Mikamo-Satoh E et al.. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.  J Exp Med. 2008;  205(7) 1601-1610
  • 41 Saito T, Gale Jr M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity.  J Exp Med. 2008;  205(7) 1523-1527
  • 42 Saito T, Owen D M, Jiang F, Marcotrigiano J, Gale Jr M. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.  Nature. 2008;  454(7203) 523-527
  • 43 Gitlin L, Barchet W, Gilfillan S et al.. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus.  Proc Natl Acad Sci U S A. 2006;  103(22) 8459-8464
  • 44 Sumpter Jr R, Loo Y M, Foy E et al.. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I.  J Virol. 2005;  79(5) 2689-2699
  • 45 Kato H, Takeuchi O, Sato S et al.. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.  Nature. 2006;  441(7089) 101-105
  • 46 Loo Y M, Fornek J, Crochet N et al.. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.  J Virol. 2008;  82(1) 335-345
  • 47 McCartney S A, Thackray L B, Gitlin L, Gilfillan S, Virgin H W, Colonna M. MDA-5 recognition of a murine norovirus.  PLoS Pathog. 2008;  4(7) e1000108
  • 48 Venkataraman T, Valdes M, Elsby R et al.. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.  J Immunol. 2007;  178(10) 6444-6455
  • 49 Satoh T, Kato H, Kumagai Y et al.. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.  Proc Natl Acad Sci U S A. 2010;  107(4) 1512-1517
  • 50 Seth R B, Sun L, Ea C K, Chen Z J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.  Cell. 2005;  122(5) 669-682
  • 51 Kawai T, Takahashi K, Sato S et al.. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.  Nat Immunol. 2005;  6(10) 981-988
  • 52 Meylan E, Curran J, Hofmann K et al.. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.  Nature. 2005;  437(7062) 1167-1172
  • 53 Xu L G, Wang Y Y, Han K J, Li L Y, Zhai Z, Shu H B. VISA is an adapter protein required for virus-triggered IFN-beta signaling.  Mol Cell. 2005;  19(6) 727-740
  • 54 Li X D, Sun L, Seth R B, Pineda G, Chen Z J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity.  Proc Natl Acad Sci U S A. 2005;  102(49) 17717-17722
  • 55 Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators.  Cell Signal. 2001;  13(6) 389-400
  • 56 Lamothe B, Campos A D, Webster W K, Gopinathan A, Hur L, Darnay B G. The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL.  J Biol Chem. 2008;  283(36) 24871-24880
  • 57 Chen Z J. Ubiquitin signalling in the NF-kappaB pathway.  Nat Cell Biol. 2005;  7(8) 758-765
  • 58 Deng L, Wang C, Spencer E et al.. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.  Cell. 2000;  103(2) 351-361
  • 59 Takeuchi O, Akira S. MDA5/RIG-I and virus recognition.  Curr Opin Immunol. 2008;  20(1) 17-22
  • 60 Oganesyan G, Saha S K, Guo B et al.. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response.  Nature. 2006;  439(7073) 208-211
  • 61 Kawai T, Akira S. TLR signaling.  Semin Immunol. 2007;  19(1) 24-32
  • 62 Alexopoulou L, Holt A C, Medzhitov R, Flavell R A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.  Nature. 2001;  413(6857) 732-738
  • 63 Medzhitov R, Janeway Jr C A. Decoding the patterns of self and nonself by the innate immune system.  Science. 2002;  296(5566) 298-300
  • 64 Edelmann K H, Richardson-Burns S, Alexopoulou L, Tyler K L, Flavell R A, Oldstone M B. Does Toll-like receptor 3 play a biological role in virus infections?.  Virology. 2004;  322(2) 231-238
  • 65 Wang T, Town T, Alexopoulou L, Anderson J F, Fikrig E, Flavell R A. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis.  Nat Med. 2004;  10(12) 1366-1373
  • 66 Tabeta K, Georgel P, Janssen E et al.. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection.  Proc Natl Acad Sci U S A. 2004;  101(10) 3516-3521
  • 67 Le Goffic R, Balloy V, Lagranderie M et al.. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia.  PLoS Pathog. 2006;  2(6) e53
  • 68 Negishi H, Osawa T, Ogami K et al.. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity.  Proc Natl Acad Sci U S A. 2008;  105(51) 20446-20451
  • 69 Bell J K, Botos I, Hall P R et al.. The molecular structure of the Toll-like receptor 3 ligand-binding domain.  Proc Natl Acad Sci U S A. 2005;  102(31) 10976-10980
  • 70 Choe J, Kelker M S, Wilson I A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain.  Science. 2005;  309(5734) 581-585
  • 71 Xu Y, Tao X, Shen B et al.. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains.  Nature. 2000;  408(6808) 111-115
  • 72 Bell J K, Askins J, Hall P R, Davies D R, Segal D M. The dsRNA binding site of human Toll-like receptor 3.  Proc Natl Acad Sci U S A. 2006;  103(23) 8792-8797
  • 73 de Bouteiller O, Merck E, Hasan U A et al.. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH.  J Biol Chem. 2005;  280(46) 38133-38145
  • 74 Okahira S, Nishikawa F, Nishikawa S, Akazawa T, Seya T, Matsumoto M. Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure.  DNA Cell Biol. 2005;  24(10) 614-623
  • 75 O'Neill L A, Bowie A G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.  Nat Rev Immunol. 2007;  7(5) 353-364
  • 76 O'Neill L A, Fitzgerald K A, Bowie A G. The Toll-IL-1 receptor adaptor family grows to five members.  Trends Immunol. 2003;  24(6) 286-290
  • 77 Bowie A, O'Neill L A. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products.  J Leukoc Biol. 2000;  67(4) 508-514
  • 78 Yamamoto M, Sato S, Hemmi H et al.. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.  Science. 2003;  301(5633) 640-643
  • 79 Takeuchi O, Akira S. MyD88 as a bottle neck in Toll/IL-1 signaling.  Curr Top Microbiol Immunol. 2002;  270 155-167
  • 80 Muzio M, Ni J, Feng P, Dixit V M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling.  Science. 1997;  278(5343) 1612-1615
  • 81 Walsh D E, Greene C M, Carroll T P et al.. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium.  J Biol Chem. 2001;  276(38) 35494-35499
  • 82 Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6).  J Exp Med. 1998;  187(12) 2097-2101
  • 83 Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction.  Nat Immunol. 2003;  4(2) 161-167
  • 84 Han K J, Su X, Xu L G, Bin L H, Zhang J, Shu H B. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways.  J Biol Chem. 2004;  279(15) 15652-15661
  • 85 Sato S, Sugiyama M, Yamamoto M et al.. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling.  J Immunol. 2003;  171(8) 4304-4310
  • 86 Meylan E, Burns K, Hofmann K et al.. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation.  Nat Immunol. 2004;  5(5) 503-507
  • 87 Carty M, Goodbody R, Schröder M, Stack J, Moynagh P N, Bowie A G. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.  Nat Immunol. 2006;  7(10) 1074-1081
  • 88 Sasai M, Tatematsu M, Oshiumi H et al.. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway.  Mol Immunol. 2010;  47(6) 1283-1291
  • 89 Kaiser W J, Offermann M K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif.  J Immunol. 2005;  174(8) 4942-4952
  • 90 Funami K, Sasai M, Oshiumi H, Seya T, Matsumoto M. Homo-oligomerization is essential for Toll/interleukin-1 receptor domain-containing adaptor molecule-1-mediated NF-kappaB and interferon regulatory factor-3 activation.  J Biol Chem. 2008;  283(26) 18283-18291
  • 91 Jiang Z, Mak T W, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta.  Proc Natl Acad Sci U S A. 2004;  101(10) 3533-3538
  • 92 Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress.  Trends Biochem Sci. 2005;  30(3) 151-159
  • 93 Grimm S, Stanger B Z, Leder P. RIP and FADD: two “death domain”-containing proteins can induce apoptosis by convergent, but dissociable, pathways.  Proc Natl Acad Sci U S A. 1996;  93(20) 10923-10927
  • 94 Sun X, Lee J, Navas T, Baldwin D T, Stewart T A, Dixit V M. RIP3, a novel apoptosis-inducing kinase.  J Biol Chem. 1999;  274(24) 16871-16875
  • 95 Foy E, Li K, Wang C et al.. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease.  Science. 2003;  300(5622) 1145-1148
  • 96 Li X D, Sun L, Seth R B, Pineda G, Chen Z J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity.  Proc Natl Acad Sci U S A. 2005;  102(49) 17717-17722
  • 97 Meylan E, Curran J, Hofmann K et al.. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.  Nature. 2005;  437(7062) 1167-1172
  • 98 Baril M, Racine M E, Penin F, Lamarre D. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.  J Virol. 2009;  83(3) 1299-1311
  • 99 Loo Y M, Owen D M, Li K et al.. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection.  Proc Natl Acad Sci U S A. 2006;  103(15) 6001-6006
  • 100 Liang Y, Ishida H, Lenz O et al.. Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors.  Gastroenterology. 2008;  135(5) 1710-1718, e2
  • 101 Cheng G, Zhong J, Chisari F V. Inhibition of dsRNA-induced signaling in hepatitis C virus-infected cells by NS3 protease-dependent and -independent mechanisms.  Proc Natl Acad Sci U S A. 2006;  103(22) 8499-8504
  • 102 Otsuka M, Kato N, Moriyama M et al.. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses.  Hepatology. 2005;  41(5) 1004-1012
  • 103 Tasaka M, Sakamoto N, Itakura Y et al.. Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response.  J Gen Virol. 2007;  88(Pt 12) 3323-3333
  • 104 Lau D T, Fish P M, Sinha M, Owen D M, Lemon S M, Gale Jr M. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients.  Hepatology. 2008;  47(3) 799-809
  • 105 Chen Z, Benureau Y, Rijnbrand R et al.. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS.  J Virol. 2007;  81(2) 964-976
  • 106 Martin A, Bodola F, Sangar D V et al.. Chronic hepatitis associated with GB virus B persistence in a tamarin after intrahepatic inoculation of synthetic viral RNA.  Proc Natl Acad Sci U S A. 2003;  100(17) 9962-9967
  • 107 Li K, Foy E, Ferreon J C et al.. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF.  Proc Natl Acad Sci U S A. 2005;  102(8) 2992-2997
  • 108 Dansako H, Ikeda M, Ariumi Y, Wakita T, Kato N. Double-stranded RNA-induced interferon-beta and inflammatory cytokine production modulated by hepatitis C virus serine proteases derived from patients with hepatic diseases.  Arch Virol. 2009;  154(5) 801-810
  • 109 Jouan L, Melancon P, Rodrigue-Gervais I et al.. Distinct antiviral signaling pathways in primary human hepatocytes and their differential disruption by HCV NS3 protease.  J Hepatol. 2010;  52(2) 167-175
  • 110 Li K, Chen Z, Kato N, Gale Jr M, Lemon S M. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes.  J Biol Chem. 2005;  280 16739-16747
  • 111 Wang N, Liang Y, Devaraj S, Wang J, Lemon S M, Li K. Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells.  J Virol. 2009;  83(19) 9824-9834
  • 112 Ferreon J C, Ferreon A C, Li K, Lemon S M. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease.  J Biol Chem. 2005;  280 20483-20492
  • 113 Probst C, Jecht M, Gauss-Müller V. Processing of proteinase precursors and their effect on hepatitis A virus particle formation.  J Virol. 1998;  72(10) 8013-8020
  • 114 Schultheiss T, Kusov Y Y, Gauss-Müller V. Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B.  Virology. 1994;  198(1) 275-281
  • 115 Tesar M, Pak I, Jia X Y, Richards O C, Summers D F, Ehrenfeld E. Expression of hepatitis A virus precursor protein P3 in vivo and in vitro: polyprotein processing of the 3CD cleavage site.  Virology. 1994;  198(2) 524-533
  • 116 Kusov Y, Gauss-Müller V. Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented in trans by 3AB and 3ABC.  J Virol. 1999;  73(12) 9867-9878
  • 117 Jürgensen D, Kusov Y Y, Fäcke M, Kräusslich H G, Gauss-Müller V. Cell-free translation and proteolytic processing of the hepatitis A virus polyprotein.  J Gen Virol. 1993;  74(Pt 4) 677-683
  • 118 Beneduce F, Ciervo A, Morace G. Site-directed mutagenesis of hepatitis A virus protein 3A: effects on membrane interaction.  Biochim Biophys Acta. 1997;  1326(1) 157-165
  • 119 Ciervo A, Beneduce F, Morace G. Polypeptide 3AB of hepatitis A virus is a transmembrane protein.  Biochem Biophys Res Commun. 1998;  249(1) 266-274
  • 120 Pisani G, Beneduce F, Gauss-Müller V, Morace G. Recombinant expression of hepatitis A virus protein 3A: interaction with membranes.  Biochem Biophys Res Commun. 1995;  211(2) 627-638
  • 121 Weitz M, Baroudy B M, Maloy W L, Ticehurst J R, Purcell R H. Detection of a genome-linked protein (VPg) of hepatitis A virus and its comparison with other picornaviral VPgs.  J Virol. 1986;  60(1) 124-130
  • 122 James M N. The peptidases from fungi and viruses.  Biol Chem. 2006;  387(8) 1023-1029
  • 123 Konduru K, Kaplan G G. Determinants in 3Dpol modulate the rate of growth of Hepatitis A Virus.  J Virol. 2010;  84(16) 8342-8347
  • 124 Parsley T B, Cornell C T, Semler B L. Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain.  J Biol Chem. 1999;  274(18) 12867-12876
  • 125 Ypma-Wong M F, Dewalt P G, Johnson V H, Lamb J G, Semler B L. Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor.  Virology. 1988;  166(1) 265-270
  • 126 Pathak H B, Oh H S, Goodfellow I G, Arnold J J, Cameron C E. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation.  J Biol Chem. 2008;  283(45) 30677-30688
  • 127 Yang Y, Liang Y, Qu L et al.. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor.  Proc Natl Acad Sci U S A. 2007;  104(17) 7253-7258
  • 128 Brack K, Berk I, Magulski T, Lederer J, Dotzauer A, Vallbracht A. Hepatitis A virus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA.  J Virol. 2002;  76(23) 11920-11930
  • 129 Fensterl V, Grotheer D, Berk I, Schlemminger S, Vallbracht A, Dotzauer A. Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon.  J Virol. 2005;  79(17) 10968-10977
  • 130 Rebsamen M, Meylan E, Curran J, Tschopp J. The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases.  Cell Death Differ. 2008;  15(11) 1804-1811
  • 131 Lei Y, Moore C B, Liesman R M et al.. MAVS-mediated apoptosis and its inhibition by viral proteins.  PLoS ONE. 2009;  4(5) e5466
  • 132 Takahashi K, Asabe S, Wieland S et al.. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection.  Proc Natl Acad Sci U S A. 2010;  107(16) 7431-7436
  • 133 Dolganiuc A, Oak S, Kodys K et al.. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation.  Gastroenterology. 2004;  127(5) 1513-1524

Stanley M LemonM.D. 

Division of Infectious Diseases, Department of Medicine, Center for Translational Research, Inflammatory Diseases Institute

Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295

Email: smlemon@UTMB.EDU

Email: stanley_lemon@med.unc.edu

    >