Copper-Catalyzed γ-Selective and Stereospecific Allylic Alkylation of Ketene Silyl Acetals

J. Am. Chem. Soc. 2011, 133, 5672-5675.

Copper-Catalyzed Stereospecific Allylic **Alkylation of Ketene Silyl Acetals**

D. LI, H. OHMIYA,* M. SAWAMURA* (HOKKAIDO UNIVERSITY, SAPPORO, JAPAN)

CuBr (5 mol%) ligand (10 mol%)
$$R_{\alpha}^{2}$$
 Up to 94% yield up to 991. Eigloselectivity ($\gamma(\alpha)$ ligand $\gamma(\alpha)$ in the poly of t

Significance: Allylic alkylation of enolates is an important transformation in organic synthesis. The copper-catalyzed method described employs unsymmetrical internal allylic phosphates as electrophiles, which react with excellent γ-regioselectivity and excellent Z-diastereoselectivity.

SYNFACTS Contributors: Hisashi Yamamoto, Patrick Brady Synfacts 2011, 7, 0737-0737 Published online: 17.06.2011 DOI: 10.1055/s-0030-1260653; Reg-No.: H06311SF

Comment: The γ -selective allylic alkylation of chiral allylic phosphates proceeds with efficient 1,3-anti α -to- γ chirality transfer. The stereochemical outcome of the product is dependent on the E/Z geometry of the allylic phosphate. The authors propose the reaction pathway shown above, invoking an allyl copper(III) intermediate.

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

allylic alkylation copper regioselectivity

