K. J. STOWERS, K. C. FORTNER, M. S. SANFORD* (UNIVERSITY OF MICHIGAN, ANN ARBOR, USA)

Aerobic Pd-Catalyzed sp³ C–H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes *J. Am. Chem. Soc.* **2011**, *133*, 6541-6544.

Pd-Catalyzed Pyridine-Directed Aerobic Olefination of Unactivated sp³ C-H Sites

 R^1 = Ph, Me, OMe, CF_3 R^2 = CO_2 Et, CO_2 Bu, CO_2 Bn, CO_2 H, $CONMe_2$, COEtX = OAc, OTf, BF_4

Selected examples:

Significance: A new palladium/polyoxometalate-catalyzed aerobic olefination of unactivated sp³ C–H bonds has been developed. Nitrogen-containing heterocycles act as directing groups and the products undergo reversible intramolecular Michael addition to form bicyclic nitrogen-containing scaffolds.

Comment: The cationic bicyclic products undergo further synthetic transformations. For example, PtO₂-catalyzed hydrogenation yields piperidines, and reduction with NaBH₄ gives 1,2,3,6-tetrahydropyridines. The pyridinium products can also be converted into the corresponding alkenes under basic conditions.

Category

Metal-Mediated Synthesis

Key words

C-H olefination alkenylation palladium

