Asymmetric Synthesis of (S)-Ketoprofen

Significance: A synthesis of the non-steroidal anti-inflammatory drug (S)-ketoprofen exemplifies a new general tandem catalysis approach to the enantioselective organocatalytic \(\alpha \)-arylation of aldehydes. The scope of the reaction is illustrated by 22 examples (67–95% yield, 91–94% ee) involving ten different aldehydes and 13 different diaryliodonium salts. A five-step synthesis of catalyst C (17% overall) from L-phenylglycine \(N \)-methylamide is provided.

Comment: A mechanism is proposed involving reaction of the aryl copper(III) species \(G \) (derived from oxidative addition of \(\text{CuBr} \) to the diaryliodonium salt \(A \)) with the enamine \(H \) (derived from condensation of the organocatalyst \(C \) with propanal) to give the \(\eta^1 \)-iminium copper(III) species \(I \). Reductive elimination with retention of configuration then gives the \(\alpha \)-aryl iminium salt \(J \), which hydrolyzes to the product with regeneration of the organocatalyst \(C \).