T. L. MAY, J. A. DABROWSKI, A. H. HOVEYDA* (BOSTON COLLEGE, CHESTNUT HILL, USA)

Formation of Vinyl-, Vinylhalide- or Acyl-Substituted Quaternary Carbon Stereogenic Centers through NHC–Cu-Catalyzed Enantioselective Conjugate Additions of Si-Containing Vinylaluminums to β-Substituted Cyclic Enones *J. Am. Chem. Soc.* **2011**, *133*, 736-739.

Enantioselective Conjugated Addition of Vinylaluminums to Cyclic Enones

Significance: The development of transition-metal-catalyzed enantioselective reactions allowing the formation of quaternary stereogenic centers is a challenging task. Herein, the authors report a highly enantioselective conjugated addition of Si-substituted vinylaluminum reagents to five-and six-membered cyclic β -substituted enones of type 1. A chiral bidentate NHC-copper complex has been identified to facilitate the desired transformation of 1 into 2 with good to excellent yields and enantioselectivities.

 SYNFACTS Contributors:
 Mark
 Lautens, Norman Nicolaus

 Synfacts 2011, 4, 0395-0395
 Published online: 18.03.2011

 DOI: 10.1055/s-0030-1259649;
 Reg-No.: L02111SF

Comment: The active catalyst for the enantioselective addition is easily formed in situ starting from air-stable $CuCl_2 \cdot H_2O$ and complex **4**. The reaction $(\mathbf{1} \to \mathbf{2})$ is typically finished within 15–20 minutes and the required Si-containing vinylaluminum reagents are readily available from silylacetylenes though a stereoselective hydroalumination using DIBAL-H. Furthermore, it has been shown that the enantiomerically enriched vinylsilane products can be easily protodesilylated $(\mathbf{7} \to \mathbf{8})$, oxidized $(\mathbf{9} \to \mathbf{10})$ or transformed into the corresponding vinyl iodides $(\mathbf{5} \to \mathbf{6})$ with good to excellent yields.

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

chiral N-heterocyclic carbenes

vinylaluminum reagents

copper

