Asymmetric Catalysis with MOFs Prepared via Chiral Induction Effect

Significance: Homochiral metal-organic frameworks (MOFs) were prepared through the chiral induction effect. Thus, the homochiral crystallization of Ce(NO₃)₃·6H₂O and H₂MDIP was performed with L- or D-BCIP as chiral inducers in water to give Ce-MDIP1 and Ce-MDIP2 (where no BCIP was installed), which exhibited Cotton effects exactly opposite to each other. Ce-MDIPs promoted the cyanosilylation to give the corresponding cyanohydrin derivatives quantitatively with 93 to >98% ee.

Comment: Ce-MDIP1 was reused twice without significant loss of catalytic activity. Cd-TBT was also prepared from Cd(ClO₄)·6H₂O and H₃TBT under similar conditions. Cd-TBT mediated the direct aldol reaction of aldehydes and cyclohexanone to afford the corresponding β-hydroxy ketones in 8–97% yield with 58–61% ee in ten days.

Preparation of homochiral MOF catalysts:

Ce(NO₃)₃·6H₂O + H₂MDIP (0.5 equiv) + L- or D-BCIP (1.0 equiv) H₂O, 100 °C, 3 d, pH 6 Et₃N

Ce-MDIP1 60% yield

Ce(NO₃)₃·6H₂O + H₂MDIP (1.0 equiv) L- or D-BCIP (1.0 equiv) H₂O, 100 °C, 3 d, pH 6 Et₃N

Ce-MDIP2 56% yield

Cd(ClO₄)·6H₂O + H₂TBT (1.0 equiv) + L-BCIP (1.0 equiv) H₂O, 120 °C, 3 d Et₃N (2.9 equiv)

Cd-TBT 65% yield

Cyanosilylation and aldol reaction using homochiral MOF catalysts:

Ar-H + OTMS + TMSCN + Ce-MDIP (2 mol %) MeCN, 24 h, r.t. N₂

Entry Ar Ce-MDIP1 Ce-MDIP2
1 Ph 93 94
2 4-MeO 91 97
3 1-Naph 98 >98
4 2-Naph >98 >98

The catalytic cyanosilylation:

Entry Ar Yield (%) ee (%)
1 2-O₂N-C₆H₄ 42 60
2 3-O₂N-C₆H₄ 77 61
3 4-O₂N-C₆H₄ 97 58
4 1-Naph 8 n.d.

(values represent the major isomer)